| Line |
Branch |
Exec |
Source |
| 1 |
|
|
// jar_xm.h |
| 2 |
|
|
// |
| 3 |
|
|
// ORIGINAL LICENSE - FOR LIBXM: |
| 4 |
|
|
// |
| 5 |
|
|
// Author: Romain "Artefact2" Dalmaso <artefact2@gmail.com> |
| 6 |
|
|
// Contributor: Dan Spencer <dan@atomicpotato.net> |
| 7 |
|
|
// Repackaged into jar_xm.h By: Joshua Adam Reisenauer <kd7tck@gmail.com> |
| 8 |
|
|
// This program is free software. It comes without any warranty, to the |
| 9 |
|
|
// extent permitted by applicable law. You can redistribute it and/or |
| 10 |
|
|
// modify it under the terms of the Do What The Fuck You Want To Public |
| 11 |
|
|
// License, Version 2, as published by Sam Hocevar. See |
| 12 |
|
|
// http://sam.zoy.org/wtfpl/COPYING for more details. |
| 13 |
|
|
// |
| 14 |
|
|
// HISTORY: |
| 15 |
|
|
// v0.1.0 2016-02-22 jar_xm.h - development by Joshua Reisenauer, MAR 2016 |
| 16 |
|
|
// v0.2.1 2021-03-07 m4ntr0n1c: Fix clipping noise for "bad" xm's (they will always clip), avoid clip noise and just put a ceiling) |
| 17 |
|
|
// v0.2.2 2021-03-09 m4ntr0n1c: Add complete debug solution (raylib.h must be included) |
| 18 |
|
|
// v0.2.3 2021-03-11 m4ntr0n1c: Fix tempo, bpm and volume on song stop / start / restart / loop |
| 19 |
|
|
// v0.2.4 2021-03-17 m4ntr0n1c: Sanitize code for readability |
| 20 |
|
|
// v0.2.5 2021-03-22 m4ntr0n1c: Minor adjustments |
| 21 |
|
|
// v0.2.6 2021-04-01 m4ntr0n1c: Minor fixes and optimisation |
| 22 |
|
|
// v0.3.0 2021-04-03 m4ntr0n1c: Addition of Stereo sample support, Linear Interpolation and Ramping now addressable options in code |
| 23 |
|
|
// v0.3.1 2021-04-04 m4ntr0n1c: Volume effects column adjustments, sample offset handling adjustments |
| 24 |
|
|
// |
| 25 |
|
|
// USAGE: |
| 26 |
|
|
// |
| 27 |
|
|
// In ONE source file, put: |
| 28 |
|
|
// |
| 29 |
|
|
// #define JAR_XM_IMPLEMENTATION |
| 30 |
|
|
// #include "jar_xm.h" |
| 31 |
|
|
// |
| 32 |
|
|
// Other source files should just include jar_xm.h |
| 33 |
|
|
// |
| 34 |
|
|
// SAMPLE CODE: |
| 35 |
|
|
// |
| 36 |
|
|
// jar_xm_context_t *musicptr; |
| 37 |
|
|
// float musicBuffer[48000 / 60]; |
| 38 |
|
|
// int intro_load(void) |
| 39 |
|
|
// { |
| 40 |
|
|
// jar_xm_create_context_from_file(&musicptr, 48000, "Song.XM"); |
| 41 |
|
|
// return 1; |
| 42 |
|
|
// } |
| 43 |
|
|
// int intro_unload(void) |
| 44 |
|
|
// { |
| 45 |
|
|
// jar_xm_free_context(musicptr); |
| 46 |
|
|
// return 1; |
| 47 |
|
|
// } |
| 48 |
|
|
// int intro_tick(long counter) |
| 49 |
|
|
// { |
| 50 |
|
|
// jar_xm_generate_samples(musicptr, musicBuffer, (48000 / 60) / 2); |
| 51 |
|
|
// if(IsKeyDown(KEY_ENTER)) |
| 52 |
|
|
// return 1; |
| 53 |
|
|
// return 0; |
| 54 |
|
|
// } |
| 55 |
|
|
// |
| 56 |
|
|
#ifndef INCLUDE_JAR_XM_H |
| 57 |
|
|
#define INCLUDE_JAR_XM_H |
| 58 |
|
|
|
| 59 |
|
|
#include <stdint.h> |
| 60 |
|
|
|
| 61 |
|
|
#define JAR_XM_DEBUG 0 |
| 62 |
|
|
#define JAR_XM_DEFENSIVE 1 |
| 63 |
|
|
//#define JAR_XM_RAYLIB 0 // set to 0 to disable the RayLib visualizer extension |
| 64 |
|
|
|
| 65 |
|
|
// Allow custom memory allocators |
| 66 |
|
|
#ifndef JARXM_MALLOC |
| 67 |
|
|
#define JARXM_MALLOC(sz) malloc(sz) |
| 68 |
|
|
#endif |
| 69 |
|
|
#ifndef JARXM_FREE |
| 70 |
|
|
#define JARXM_FREE(p) free(p) |
| 71 |
|
|
#endif |
| 72 |
|
|
|
| 73 |
|
|
//------------------------------------------------------------------------------- |
| 74 |
|
|
struct jar_xm_context_s; |
| 75 |
|
|
typedef struct jar_xm_context_s jar_xm_context_t; |
| 76 |
|
|
|
| 77 |
|
|
#ifdef __cplusplus |
| 78 |
|
|
extern "C" { |
| 79 |
|
|
#endif |
| 80 |
|
|
|
| 81 |
|
|
//** Create a XM context. |
| 82 |
|
|
// * @param moddata the contents of the module |
| 83 |
|
|
// * @param rate play rate in Hz, recommended value of 48000 |
| 84 |
|
|
// * @returns 0 on success |
| 85 |
|
|
// * @returns 1 if module data is not sane |
| 86 |
|
|
// * @returns 2 if memory allocation failed |
| 87 |
|
|
// * @returns 3 unable to open input file |
| 88 |
|
|
// * @returns 4 fseek() failed |
| 89 |
|
|
// * @returns 5 fread() failed |
| 90 |
|
|
// * @returns 6 unkown error |
| 91 |
|
|
// * @deprecated This function is unsafe! |
| 92 |
|
|
// * @see jar_xm_create_context_safe() |
| 93 |
|
|
int jar_xm_create_context_from_file(jar_xm_context_t** ctx, uint32_t rate, const char* filename); |
| 94 |
|
|
|
| 95 |
|
|
//** Create a XM context. |
| 96 |
|
|
// * @param moddata the contents of the module |
| 97 |
|
|
// * @param rate play rate in Hz, recommended value of 48000 |
| 98 |
|
|
// * @returns 0 on success |
| 99 |
|
|
// * @returns 1 if module data is not sane |
| 100 |
|
|
// * @returns 2 if memory allocation failed |
| 101 |
|
|
// * @deprecated This function is unsafe! |
| 102 |
|
|
// * @see jar_xm_create_context_safe() |
| 103 |
|
|
int jar_xm_create_context(jar_xm_context_t** ctx, const char* moddata, uint32_t rate); |
| 104 |
|
|
|
| 105 |
|
|
//** Create a XM context. |
| 106 |
|
|
// * @param moddata the contents of the module |
| 107 |
|
|
// * @param moddata_length the length of the contents of the module, in bytes |
| 108 |
|
|
// * @param rate play rate in Hz, recommended value of 48000 |
| 109 |
|
|
// * @returns 0 on success |
| 110 |
|
|
// * @returns 1 if module data is not sane |
| 111 |
|
|
// * @returns 2 if memory allocation failed |
| 112 |
|
|
int jar_xm_create_context_safe(jar_xm_context_t** ctx, const char* moddata, size_t moddata_length, uint32_t rate); |
| 113 |
|
|
|
| 114 |
|
|
//** Free a XM context created by jar_xm_create_context(). */ |
| 115 |
|
|
void jar_xm_free_context(jar_xm_context_t* ctx); |
| 116 |
|
|
|
| 117 |
|
|
//** Play the module and put the sound samples in an output buffer. |
| 118 |
|
|
// * @param output buffer of 2*numsamples elements (A left and right value for each sample) |
| 119 |
|
|
// * @param numsamples number of samples to generate |
| 120 |
|
|
void jar_xm_generate_samples(jar_xm_context_t* ctx, float* output, size_t numsamples); |
| 121 |
|
|
|
| 122 |
|
|
//** Play the module, resample from float to 16 bit, and put the sound samples in an output buffer. |
| 123 |
|
|
// * @param output buffer of 2*numsamples elements (A left and right value for each sample) |
| 124 |
|
|
// * @param numsamples number of samples to generate |
| 125 |
|
✗ |
void jar_xm_generate_samples_16bit(jar_xm_context_t* ctx, short* output, size_t numsamples) { |
| 126 |
|
✗ |
float* musicBuffer = JARXM_MALLOC((2*numsamples)*sizeof(float)); |
| 127 |
|
✗ |
jar_xm_generate_samples(ctx, musicBuffer, numsamples); |
| 128 |
|
|
|
| 129 |
|
✗ |
if(output){ |
| 130 |
|
✗ |
for(int x=0;x<2*numsamples;x++) output[x] = (musicBuffer[x] * 32767.0f); // scale sample to signed small int |
| 131 |
|
|
} |
| 132 |
|
✗ |
JARXM_FREE(musicBuffer); |
| 133 |
|
|
} |
| 134 |
|
|
|
| 135 |
|
|
//** Play the module, resample from float to 8 bit, and put the sound samples in an output buffer. |
| 136 |
|
|
// * @param output buffer of 2*numsamples elements (A left and right value for each sample) |
| 137 |
|
|
// * @param numsamples number of samples to generate |
| 138 |
|
✗ |
void jar_xm_generate_samples_8bit(jar_xm_context_t* ctx, char* output, size_t numsamples) { |
| 139 |
|
✗ |
float* musicBuffer = JARXM_MALLOC((2*numsamples)*sizeof(float)); |
| 140 |
|
✗ |
jar_xm_generate_samples(ctx, musicBuffer, numsamples); |
| 141 |
|
|
|
| 142 |
|
✗ |
if(output){ |
| 143 |
|
✗ |
for(int x=0;x<2*numsamples;x++) output[x] = (musicBuffer[x] * 127.0f); // scale sample to signed 8 bit |
| 144 |
|
|
} |
| 145 |
|
✗ |
JARXM_FREE(musicBuffer); |
| 146 |
|
|
} |
| 147 |
|
|
|
| 148 |
|
|
//** Set the maximum number of times a module can loop. After the specified number of loops, calls to jar_xm_generate_samples will only generate silence. You can control the current number of loops with jar_xm_get_loop_count(). |
| 149 |
|
|
// * @param loopcnt maximum number of loops. Use 0 to loop indefinitely. |
| 150 |
|
|
void jar_xm_set_max_loop_count(jar_xm_context_t* ctx, uint8_t loopcnt); |
| 151 |
|
|
|
| 152 |
|
|
//** Get the loop count of the currently playing module. This value is 0 when the module is still playing, 1 when the module has looped once, etc. |
| 153 |
|
|
uint8_t jar_xm_get_loop_count(jar_xm_context_t* ctx); |
| 154 |
|
|
|
| 155 |
|
|
//** Mute or unmute a channel. |
| 156 |
|
|
// * @note Channel numbers go from 1 to jar_xm_get_number_of_channels(...). |
| 157 |
|
|
// * @return whether the channel was muted. |
| 158 |
|
|
bool jar_xm_mute_channel(jar_xm_context_t* ctx, uint16_t, bool); |
| 159 |
|
|
|
| 160 |
|
|
//** Mute or unmute an instrument. |
| 161 |
|
|
// * @note Instrument numbers go from 1 to jar_xm_get_number_of_instruments(...). |
| 162 |
|
|
// * @return whether the instrument was muted. |
| 163 |
|
|
bool jar_xm_mute_instrument(jar_xm_context_t* ctx, uint16_t, bool); |
| 164 |
|
|
|
| 165 |
|
|
//** Get the module name as a NUL-terminated string. |
| 166 |
|
|
const char* jar_xm_get_module_name(jar_xm_context_t* ctx); |
| 167 |
|
|
|
| 168 |
|
|
//** Get the tracker name as a NUL-terminated string. |
| 169 |
|
|
const char* jar_xm_get_tracker_name(jar_xm_context_t* ctx); |
| 170 |
|
|
|
| 171 |
|
|
//** Get the number of channels. |
| 172 |
|
|
uint16_t jar_xm_get_number_of_channels(jar_xm_context_t* ctx); |
| 173 |
|
|
|
| 174 |
|
|
//** Get the module length (in patterns). |
| 175 |
|
|
uint16_t jar_xm_get_module_length(jar_xm_context_t*); |
| 176 |
|
|
|
| 177 |
|
|
//** Get the number of patterns. |
| 178 |
|
|
uint16_t jar_xm_get_number_of_patterns(jar_xm_context_t* ctx); |
| 179 |
|
|
|
| 180 |
|
|
//** Get the number of rows of a pattern. |
| 181 |
|
|
// * @note Pattern numbers go from 0 to jar_xm_get_number_of_patterns(...)-1. |
| 182 |
|
|
uint16_t jar_xm_get_number_of_rows(jar_xm_context_t* ctx, uint16_t); |
| 183 |
|
|
|
| 184 |
|
|
//** Get the number of instruments. |
| 185 |
|
|
uint16_t jar_xm_get_number_of_instruments(jar_xm_context_t* ctx); |
| 186 |
|
|
|
| 187 |
|
|
//** Get the number of samples of an instrument. |
| 188 |
|
|
// * @note Instrument numbers go from 1 to jar_xm_get_number_of_instruments(...). |
| 189 |
|
|
uint16_t jar_xm_get_number_of_samples(jar_xm_context_t* ctx, uint16_t); |
| 190 |
|
|
|
| 191 |
|
|
//** Get the current module speed. |
| 192 |
|
|
// * @param bpm will receive the current BPM |
| 193 |
|
|
// * @param tempo will receive the current tempo (ticks per line) |
| 194 |
|
|
void jar_xm_get_playing_speed(jar_xm_context_t* ctx, uint16_t* bpm, uint16_t* tempo); |
| 195 |
|
|
|
| 196 |
|
|
//** Get the current position in the module being played. |
| 197 |
|
|
// * @param pattern_index if not NULL, will receive the current pattern index in the POT (pattern order table) |
| 198 |
|
|
// * @param pattern if not NULL, will receive the current pattern number |
| 199 |
|
|
// * @param row if not NULL, will receive the current row |
| 200 |
|
|
// * @param samples if not NULL, will receive the total number of |
| 201 |
|
|
// * generated samples (divide by sample rate to get seconds of generated audio) |
| 202 |
|
|
void jar_xm_get_position(jar_xm_context_t* ctx, uint8_t* pattern_index, uint8_t* pattern, uint8_t* row, uint64_t* samples); |
| 203 |
|
|
|
| 204 |
|
|
//** Get the latest time (in number of generated samples) when a particular instrument was triggered in any channel. |
| 205 |
|
|
// * @note Instrument numbers go from 1 to jar_xm_get_number_of_instruments(...). |
| 206 |
|
|
uint64_t jar_xm_get_latest_trigger_of_instrument(jar_xm_context_t* ctx, uint16_t); |
| 207 |
|
|
|
| 208 |
|
|
//** Get the latest time (in number of generated samples) when a particular sample was triggered in any channel. |
| 209 |
|
|
// * @note Instrument numbers go from 1 to jar_xm_get_number_of_instruments(...). |
| 210 |
|
|
// * @note Sample numbers go from 0 to jar_xm_get_nubmer_of_samples(...,instr)-1. |
| 211 |
|
|
uint64_t jar_xm_get_latest_trigger_of_sample(jar_xm_context_t* ctx, uint16_t instr, uint16_t sample); |
| 212 |
|
|
|
| 213 |
|
|
//** Get the latest time (in number of generated samples) when any instrument was triggered in a given channel. |
| 214 |
|
|
// * @note Channel numbers go from 1 to jar_xm_get_number_of_channels(...). |
| 215 |
|
|
uint64_t jar_xm_get_latest_trigger_of_channel(jar_xm_context_t* ctx, uint16_t); |
| 216 |
|
|
|
| 217 |
|
|
//** Get the number of remaining samples. Divide by 2 to get the number of individual LR data samples. |
| 218 |
|
|
// * @note This is the remaining number of samples before the loop starts module again, or halts if on last pass. |
| 219 |
|
|
// * @note This function is very slow and should only be run once, if at all. |
| 220 |
|
|
uint64_t jar_xm_get_remaining_samples(jar_xm_context_t* ctx); |
| 221 |
|
|
|
| 222 |
|
|
#ifdef __cplusplus |
| 223 |
|
|
} |
| 224 |
|
|
#endif |
| 225 |
|
|
//------------------------------------------------------------------------------- |
| 226 |
|
|
|
| 227 |
|
|
#ifdef JAR_XM_IMPLEMENTATION |
| 228 |
|
|
|
| 229 |
|
|
#include <math.h> |
| 230 |
|
|
#include <stdio.h> |
| 231 |
|
|
#include <stdlib.h> |
| 232 |
|
|
#include <limits.h> |
| 233 |
|
|
#include <string.h> |
| 234 |
|
|
|
| 235 |
|
|
#if JAR_XM_DEBUG //JAR_XM_DEBUG defined as 0 |
| 236 |
|
|
#include <stdio.h> |
| 237 |
|
|
#define DEBUG(fmt, ...) do { \ |
| 238 |
|
|
fprintf(stderr, "%s(): " fmt "\n", __func__, __VA_ARGS__); \ |
| 239 |
|
|
fflush(stderr); \ |
| 240 |
|
|
} while(0) |
| 241 |
|
|
#else |
| 242 |
|
|
#define DEBUG(...) |
| 243 |
|
|
#endif |
| 244 |
|
|
|
| 245 |
|
|
#if jar_xm_BIG_ENDIAN |
| 246 |
|
|
#error "Big endian platforms are not yet supported, sorry" |
| 247 |
|
|
/* Make sure the compiler stops, even if #error is ignored */ |
| 248 |
|
|
extern int __fail[-1]; |
| 249 |
|
|
#endif |
| 250 |
|
|
|
| 251 |
|
|
/* ----- XM constants ----- */ |
| 252 |
|
|
#define SAMPLE_NAME_LENGTH 22 |
| 253 |
|
|
#define INSTRUMENT_NAME_LENGTH 22 |
| 254 |
|
|
#define MODULE_NAME_LENGTH 20 |
| 255 |
|
|
#define TRACKER_NAME_LENGTH 20 |
| 256 |
|
|
#define PATTERN_ORDER_TABLE_LENGTH 256 |
| 257 |
|
|
#define NUM_NOTES 96 // from 1 to 96, where 1 = C-0 |
| 258 |
|
|
#define NUM_ENVELOPE_POINTS 12 // to be verified if 12 is the max |
| 259 |
|
|
#define MAX_NUM_ROWS 256 |
| 260 |
|
|
|
| 261 |
|
|
#define jar_xm_SAMPLE_RAMPING_POINTS 8 |
| 262 |
|
|
|
| 263 |
|
|
/* ----- Data types ----- */ |
| 264 |
|
|
|
| 265 |
|
|
enum jar_xm_waveform_type_e { |
| 266 |
|
|
jar_xm_SINE_WAVEFORM = 0, |
| 267 |
|
|
jar_xm_RAMP_DOWN_WAVEFORM = 1, |
| 268 |
|
|
jar_xm_SQUARE_WAVEFORM = 2, |
| 269 |
|
|
jar_xm_RANDOM_WAVEFORM = 3, |
| 270 |
|
|
jar_xm_RAMP_UP_WAVEFORM = 4, |
| 271 |
|
|
}; |
| 272 |
|
|
typedef enum jar_xm_waveform_type_e jar_xm_waveform_type_t; |
| 273 |
|
|
|
| 274 |
|
|
enum jar_xm_loop_type_e { |
| 275 |
|
|
jar_xm_NO_LOOP, |
| 276 |
|
|
jar_xm_FORWARD_LOOP, |
| 277 |
|
|
jar_xm_PING_PONG_LOOP, |
| 278 |
|
|
}; |
| 279 |
|
|
typedef enum jar_xm_loop_type_e jar_xm_loop_type_t; |
| 280 |
|
|
|
| 281 |
|
|
enum jar_xm_frequency_type_e { |
| 282 |
|
|
jar_xm_LINEAR_FREQUENCIES, |
| 283 |
|
|
jar_xm_AMIGA_FREQUENCIES, |
| 284 |
|
|
}; |
| 285 |
|
|
typedef enum jar_xm_frequency_type_e jar_xm_frequency_type_t; |
| 286 |
|
|
|
| 287 |
|
|
struct jar_xm_envelope_point_s { |
| 288 |
|
|
uint16_t frame; |
| 289 |
|
|
uint16_t value; |
| 290 |
|
|
}; |
| 291 |
|
|
typedef struct jar_xm_envelope_point_s jar_xm_envelope_point_t; |
| 292 |
|
|
|
| 293 |
|
|
struct jar_xm_envelope_s { |
| 294 |
|
|
jar_xm_envelope_point_t points[NUM_ENVELOPE_POINTS]; |
| 295 |
|
|
uint8_t num_points; |
| 296 |
|
|
uint8_t sustain_point; |
| 297 |
|
|
uint8_t loop_start_point; |
| 298 |
|
|
uint8_t loop_end_point; |
| 299 |
|
|
bool enabled; |
| 300 |
|
|
bool sustain_enabled; |
| 301 |
|
|
bool loop_enabled; |
| 302 |
|
|
}; |
| 303 |
|
|
typedef struct jar_xm_envelope_s jar_xm_envelope_t; |
| 304 |
|
|
|
| 305 |
|
|
struct jar_xm_sample_s { |
| 306 |
|
|
char name[SAMPLE_NAME_LENGTH + 1]; |
| 307 |
|
|
int8_t bits; /* Either 8 or 16 */ |
| 308 |
|
|
int8_t stereo; |
| 309 |
|
|
uint32_t length; |
| 310 |
|
|
uint32_t loop_start; |
| 311 |
|
|
uint32_t loop_length; |
| 312 |
|
|
uint32_t loop_end; |
| 313 |
|
|
float volume; |
| 314 |
|
|
int8_t finetune; |
| 315 |
|
|
jar_xm_loop_type_t loop_type; |
| 316 |
|
|
float panning; |
| 317 |
|
|
int8_t relative_note; |
| 318 |
|
|
uint64_t latest_trigger; |
| 319 |
|
|
|
| 320 |
|
|
float* data; |
| 321 |
|
|
}; |
| 322 |
|
|
typedef struct jar_xm_sample_s jar_xm_sample_t; |
| 323 |
|
|
|
| 324 |
|
|
struct jar_xm_instrument_s { |
| 325 |
|
|
char name[INSTRUMENT_NAME_LENGTH + 1]; |
| 326 |
|
|
uint16_t num_samples; |
| 327 |
|
|
uint8_t sample_of_notes[NUM_NOTES]; |
| 328 |
|
|
jar_xm_envelope_t volume_envelope; |
| 329 |
|
|
jar_xm_envelope_t panning_envelope; |
| 330 |
|
|
jar_xm_waveform_type_t vibrato_type; |
| 331 |
|
|
uint8_t vibrato_sweep; |
| 332 |
|
|
uint8_t vibrato_depth; |
| 333 |
|
|
uint8_t vibrato_rate; |
| 334 |
|
|
uint16_t volume_fadeout; |
| 335 |
|
|
uint64_t latest_trigger; |
| 336 |
|
|
bool muted; |
| 337 |
|
|
|
| 338 |
|
|
jar_xm_sample_t* samples; |
| 339 |
|
|
}; |
| 340 |
|
|
typedef struct jar_xm_instrument_s jar_xm_instrument_t; |
| 341 |
|
|
|
| 342 |
|
|
struct jar_xm_pattern_slot_s { |
| 343 |
|
|
uint8_t note; /* 1-96, 97 = Key Off note */ |
| 344 |
|
|
uint8_t instrument; /* 1-128 */ |
| 345 |
|
|
uint8_t volume_column; |
| 346 |
|
|
uint8_t effect_type; |
| 347 |
|
|
uint8_t effect_param; |
| 348 |
|
|
}; |
| 349 |
|
|
typedef struct jar_xm_pattern_slot_s jar_xm_pattern_slot_t; |
| 350 |
|
|
|
| 351 |
|
|
struct jar_xm_pattern_s { |
| 352 |
|
|
uint16_t num_rows; |
| 353 |
|
|
jar_xm_pattern_slot_t* slots; /* Array of size num_rows * num_channels */ |
| 354 |
|
|
}; |
| 355 |
|
|
typedef struct jar_xm_pattern_s jar_xm_pattern_t; |
| 356 |
|
|
|
| 357 |
|
|
struct jar_xm_module_s { |
| 358 |
|
|
char name[MODULE_NAME_LENGTH + 1]; |
| 359 |
|
|
char trackername[TRACKER_NAME_LENGTH + 1]; |
| 360 |
|
|
uint16_t length; |
| 361 |
|
|
uint16_t restart_position; |
| 362 |
|
|
uint16_t num_channels; |
| 363 |
|
|
uint16_t num_patterns; |
| 364 |
|
|
uint16_t num_instruments; |
| 365 |
|
|
uint16_t linear_interpolation; |
| 366 |
|
|
uint16_t ramping; |
| 367 |
|
|
jar_xm_frequency_type_t frequency_type; |
| 368 |
|
|
uint8_t pattern_table[PATTERN_ORDER_TABLE_LENGTH]; |
| 369 |
|
|
|
| 370 |
|
|
jar_xm_pattern_t* patterns; |
| 371 |
|
|
jar_xm_instrument_t* instruments; /* Instrument 1 has index 0, instrument 2 has index 1, etc. */ |
| 372 |
|
|
}; |
| 373 |
|
|
typedef struct jar_xm_module_s jar_xm_module_t; |
| 374 |
|
|
|
| 375 |
|
|
struct jar_xm_channel_context_s { |
| 376 |
|
|
float note; |
| 377 |
|
|
float orig_note; /* The original note before effect modifications, as read in the pattern. */ |
| 378 |
|
|
jar_xm_instrument_t* instrument; /* Could be NULL */ |
| 379 |
|
|
jar_xm_sample_t* sample; /* Could be NULL */ |
| 380 |
|
|
jar_xm_pattern_slot_t* current; |
| 381 |
|
|
|
| 382 |
|
|
float sample_position; |
| 383 |
|
|
float period; |
| 384 |
|
|
float frequency; |
| 385 |
|
|
float step; |
| 386 |
|
|
bool ping; /* For ping-pong samples: true is -->, false is <-- */ |
| 387 |
|
|
|
| 388 |
|
|
float volume; /* Ideally between 0 (muted) and 1 (loudest) */ |
| 389 |
|
|
float panning; /* Between 0 (left) and 1 (right); 0.5 is centered */ |
| 390 |
|
|
|
| 391 |
|
|
uint16_t autovibrato_ticks; |
| 392 |
|
|
|
| 393 |
|
|
bool sustained; |
| 394 |
|
|
float fadeout_volume; |
| 395 |
|
|
float volume_envelope_volume; |
| 396 |
|
|
float panning_envelope_panning; |
| 397 |
|
|
uint16_t volume_envelope_frame_count; |
| 398 |
|
|
uint16_t panning_envelope_frame_count; |
| 399 |
|
|
|
| 400 |
|
|
float autovibrato_note_offset; |
| 401 |
|
|
|
| 402 |
|
|
bool arp_in_progress; |
| 403 |
|
|
uint8_t arp_note_offset; |
| 404 |
|
|
uint8_t volume_slide_param; |
| 405 |
|
|
uint8_t fine_volume_slide_param; |
| 406 |
|
|
uint8_t global_volume_slide_param; |
| 407 |
|
|
uint8_t panning_slide_param; |
| 408 |
|
|
uint8_t portamento_up_param; |
| 409 |
|
|
uint8_t portamento_down_param; |
| 410 |
|
|
uint8_t fine_portamento_up_param; |
| 411 |
|
|
uint8_t fine_portamento_down_param; |
| 412 |
|
|
uint8_t extra_fine_portamento_up_param; |
| 413 |
|
|
uint8_t extra_fine_portamento_down_param; |
| 414 |
|
|
uint8_t tone_portamento_param; |
| 415 |
|
|
float tone_portamento_target_period; |
| 416 |
|
|
uint8_t multi_retrig_param; |
| 417 |
|
|
uint8_t note_delay_param; |
| 418 |
|
|
uint8_t pattern_loop_origin; /* Where to restart a E6y loop */ |
| 419 |
|
|
uint8_t pattern_loop_count; /* How many loop passes have been done */ |
| 420 |
|
|
bool vibrato_in_progress; |
| 421 |
|
|
jar_xm_waveform_type_t vibrato_waveform; |
| 422 |
|
|
bool vibrato_waveform_retrigger; /* True if a new note retriggers the waveform */ |
| 423 |
|
|
uint8_t vibrato_param; |
| 424 |
|
|
uint16_t vibrato_ticks; /* Position in the waveform */ |
| 425 |
|
|
float vibrato_note_offset; |
| 426 |
|
|
jar_xm_waveform_type_t tremolo_waveform; |
| 427 |
|
|
bool tremolo_waveform_retrigger; |
| 428 |
|
|
uint8_t tremolo_param; |
| 429 |
|
|
uint8_t tremolo_ticks; |
| 430 |
|
|
float tremolo_volume; |
| 431 |
|
|
uint8_t tremor_param; |
| 432 |
|
|
bool tremor_on; |
| 433 |
|
|
|
| 434 |
|
|
uint64_t latest_trigger; |
| 435 |
|
|
bool muted; |
| 436 |
|
|
|
| 437 |
|
|
//* These values are updated at the end of each tick, to save a couple of float operations on every generated sample. |
| 438 |
|
|
float target_panning; |
| 439 |
|
|
float target_volume; |
| 440 |
|
|
|
| 441 |
|
|
unsigned long frame_count; |
| 442 |
|
|
float end_of_previous_sample_left[jar_xm_SAMPLE_RAMPING_POINTS]; |
| 443 |
|
|
float end_of_previous_sample_right[jar_xm_SAMPLE_RAMPING_POINTS]; |
| 444 |
|
|
float curr_left; |
| 445 |
|
|
float curr_right; |
| 446 |
|
|
|
| 447 |
|
|
float actual_panning; |
| 448 |
|
|
float actual_volume; |
| 449 |
|
|
}; |
| 450 |
|
|
typedef struct jar_xm_channel_context_s jar_xm_channel_context_t; |
| 451 |
|
|
|
| 452 |
|
|
struct jar_xm_context_s { |
| 453 |
|
|
void* allocated_memory; |
| 454 |
|
|
jar_xm_module_t module; |
| 455 |
|
|
uint32_t rate; |
| 456 |
|
|
|
| 457 |
|
|
uint16_t default_tempo; // Number of ticks per row |
| 458 |
|
|
uint16_t default_bpm; |
| 459 |
|
|
float default_global_volume; |
| 460 |
|
|
|
| 461 |
|
|
uint16_t tempo; // Number of ticks per row |
| 462 |
|
|
uint16_t bpm; |
| 463 |
|
|
float global_volume; |
| 464 |
|
|
|
| 465 |
|
|
float volume_ramp; /* How much is a channel final volume allowed to change per sample; this is used to avoid abrubt volume changes which manifest as "clicks" in the generated sound. */ |
| 466 |
|
|
float panning_ramp; /* Same for panning. */ |
| 467 |
|
|
|
| 468 |
|
|
uint8_t current_table_index; |
| 469 |
|
|
uint8_t current_row; |
| 470 |
|
|
uint16_t current_tick; /* Can go below 255, with high tempo and a pattern delay */ |
| 471 |
|
|
float remaining_samples_in_tick; |
| 472 |
|
|
uint64_t generated_samples; |
| 473 |
|
|
|
| 474 |
|
|
bool position_jump; |
| 475 |
|
|
bool pattern_break; |
| 476 |
|
|
uint8_t jump_dest; |
| 477 |
|
|
uint8_t jump_row; |
| 478 |
|
|
|
| 479 |
|
|
uint16_t extra_ticks; /* Extra ticks to be played before going to the next row - Used for EEy effect */ |
| 480 |
|
|
|
| 481 |
|
|
uint8_t* row_loop_count; /* Array of size MAX_NUM_ROWS * module_length */ |
| 482 |
|
|
uint8_t loop_count; |
| 483 |
|
|
uint8_t max_loop_count; |
| 484 |
|
|
|
| 485 |
|
|
jar_xm_channel_context_t* channels; |
| 486 |
|
|
}; |
| 487 |
|
|
|
| 488 |
|
|
#if JAR_XM_DEFENSIVE |
| 489 |
|
|
|
| 490 |
|
|
//** Check the module data for errors/inconsistencies. |
| 491 |
|
|
// * @returns 0 if everything looks OK. Module should be safe to load. |
| 492 |
|
|
int jar_xm_check_sanity_preload(const char*, size_t); |
| 493 |
|
|
|
| 494 |
|
|
//** Check a loaded module for errors/inconsistencies. |
| 495 |
|
|
// * @returns 0 if everything looks OK. |
| 496 |
|
|
int jar_xm_check_sanity_postload(jar_xm_context_t*); |
| 497 |
|
|
|
| 498 |
|
|
#endif |
| 499 |
|
|
|
| 500 |
|
|
//** Get the number of bytes needed to store the module data in a dynamically allocated blank context. |
| 501 |
|
|
// * Things that are dynamically allocated: |
| 502 |
|
|
// * - sample data |
| 503 |
|
|
// * - sample structures in instruments |
| 504 |
|
|
// * - pattern data |
| 505 |
|
|
// * - row loop count arrays |
| 506 |
|
|
// * - pattern structures in module |
| 507 |
|
|
// * - instrument structures in module |
| 508 |
|
|
// * - channel contexts |
| 509 |
|
|
// * - context structure itself |
| 510 |
|
|
// * @returns 0 if everything looks OK. |
| 511 |
|
|
size_t jar_xm_get_memory_needed_for_context(const char*, size_t); |
| 512 |
|
|
|
| 513 |
|
|
//** Populate the context from module data. |
| 514 |
|
|
// * @returns pointer to the memory pool |
| 515 |
|
|
char* jar_xm_load_module(jar_xm_context_t*, const char*, size_t, char*); |
| 516 |
|
|
|
| 517 |
|
✗ |
int jar_xm_create_context(jar_xm_context_t** ctxp, const char* moddata, uint32_t rate) { |
| 518 |
|
✗ |
return jar_xm_create_context_safe(ctxp, moddata, SIZE_MAX, rate); |
| 519 |
|
|
} |
| 520 |
|
|
|
| 521 |
|
|
#define ALIGN(x, b) (((x) + ((b) - 1)) & ~((b) - 1)) |
| 522 |
|
|
#define ALIGN_PTR(x, b) (void*)(((uintptr_t)(x) + ((b) - 1)) & ~((b) - 1)) |
| 523 |
|
✗ |
int jar_xm_create_context_safe(jar_xm_context_t** ctxp, const char* moddata, size_t moddata_length, uint32_t rate) { |
| 524 |
|
|
#if JAR_XM_DEFENSIVE |
| 525 |
|
|
int ret; |
| 526 |
|
|
#endif |
| 527 |
|
|
size_t bytes_needed; |
| 528 |
|
|
char* mempool; |
| 529 |
|
|
jar_xm_context_t* ctx; |
| 530 |
|
|
|
| 531 |
|
|
#if JAR_XM_DEFENSIVE |
| 532 |
|
✗ |
if((ret = jar_xm_check_sanity_preload(moddata, moddata_length))) { |
| 533 |
|
|
DEBUG("jar_xm_check_sanity_preload() returned %i, module is not safe to load", ret); |
| 534 |
|
|
return 1; |
| 535 |
|
|
} |
| 536 |
|
|
#endif |
| 537 |
|
|
|
| 538 |
|
✗ |
bytes_needed = jar_xm_get_memory_needed_for_context(moddata, moddata_length); |
| 539 |
|
✗ |
mempool = JARXM_MALLOC(bytes_needed); |
| 540 |
|
✗ |
if(mempool == NULL && bytes_needed > 0) { /* JARXM_MALLOC() failed, trouble ahead */ |
| 541 |
|
|
DEBUG("call to JARXM_MALLOC() failed, returned %p", (void*)mempool); |
| 542 |
|
|
return 2; |
| 543 |
|
|
} |
| 544 |
|
|
|
| 545 |
|
|
/* Initialize most of the fields to 0, 0.f, NULL or false depending on type */ |
| 546 |
|
|
memset(mempool, 0, bytes_needed); |
| 547 |
|
|
|
| 548 |
|
✗ |
ctx = (*ctxp = (jar_xm_context_t *)mempool); |
| 549 |
|
✗ |
ctx->allocated_memory = mempool; /* Keep original pointer for JARXM_FREE() */ |
| 550 |
|
✗ |
mempool += sizeof(jar_xm_context_t); |
| 551 |
|
|
|
| 552 |
|
✗ |
ctx->rate = rate; |
| 553 |
|
✗ |
mempool = jar_xm_load_module(ctx, moddata, moddata_length, mempool); |
| 554 |
|
✗ |
mempool = ALIGN_PTR(mempool, 16); |
| 555 |
|
|
|
| 556 |
|
✗ |
ctx->channels = (jar_xm_channel_context_t*)mempool; |
| 557 |
|
✗ |
mempool += ctx->module.num_channels * sizeof(jar_xm_channel_context_t); |
| 558 |
|
✗ |
mempool = ALIGN_PTR(mempool, 16); |
| 559 |
|
|
|
| 560 |
|
✗ |
ctx->default_global_volume = 1.f; |
| 561 |
|
✗ |
ctx->global_volume = ctx->default_global_volume; |
| 562 |
|
|
|
| 563 |
|
✗ |
ctx->volume_ramp = (1.f / 128.f); |
| 564 |
|
✗ |
ctx->panning_ramp = (1.f / 128.f); |
| 565 |
|
|
|
| 566 |
|
✗ |
for(uint8_t i = 0; i < ctx->module.num_channels; ++i) { |
| 567 |
|
✗ |
jar_xm_channel_context_t *ch = ctx->channels + i; |
| 568 |
|
✗ |
ch->ping = true; |
| 569 |
|
✗ |
ch->vibrato_waveform = jar_xm_SINE_WAVEFORM; |
| 570 |
|
✗ |
ch->vibrato_waveform_retrigger = true; |
| 571 |
|
✗ |
ch->tremolo_waveform = jar_xm_SINE_WAVEFORM; |
| 572 |
|
✗ |
ch->tremolo_waveform_retrigger = true; |
| 573 |
|
✗ |
ch->volume = ch->volume_envelope_volume = ch->fadeout_volume = 1.0f; |
| 574 |
|
✗ |
ch->panning = ch->panning_envelope_panning = .5f; |
| 575 |
|
✗ |
ch->actual_volume = .0f; |
| 576 |
|
✗ |
ch->actual_panning = .5f; |
| 577 |
|
|
} |
| 578 |
|
|
|
| 579 |
|
✗ |
mempool = ALIGN_PTR(mempool, 16); |
| 580 |
|
✗ |
ctx->row_loop_count = (uint8_t *)mempool; |
| 581 |
|
|
mempool += MAX_NUM_ROWS * sizeof(uint8_t); |
| 582 |
|
|
|
| 583 |
|
|
#if JAR_XM_DEFENSIVE |
| 584 |
|
✗ |
if((ret = jar_xm_check_sanity_postload(ctx))) { DEBUG("jar_xm_check_sanity_postload() returned %i, module is not safe to play", ret); |
| 585 |
|
✗ |
jar_xm_free_context(ctx); |
| 586 |
|
✗ |
return 1; |
| 587 |
|
|
} |
| 588 |
|
|
#endif |
| 589 |
|
|
|
| 590 |
|
|
return 0; |
| 591 |
|
|
} |
| 592 |
|
|
|
| 593 |
|
✗ |
void jar_xm_free_context(jar_xm_context_t *ctx) { |
| 594 |
|
✗ |
if (ctx != NULL) { JARXM_FREE(ctx->allocated_memory); } |
| 595 |
|
|
} |
| 596 |
|
|
|
| 597 |
|
✗ |
void jar_xm_set_max_loop_count(jar_xm_context_t *ctx, uint8_t loopcnt) { |
| 598 |
|
✗ |
ctx->max_loop_count = loopcnt; |
| 599 |
|
|
} |
| 600 |
|
|
|
| 601 |
|
✗ |
uint8_t jar_xm_get_loop_count(jar_xm_context_t *ctx) { |
| 602 |
|
✗ |
return ctx->loop_count; |
| 603 |
|
|
} |
| 604 |
|
|
|
| 605 |
|
✗ |
bool jar_xm_mute_channel(jar_xm_context_t *ctx, uint16_t channel, bool mute) { |
| 606 |
|
✗ |
bool old = ctx->channels[channel - 1].muted; |
| 607 |
|
✗ |
ctx->channels[channel - 1].muted = mute; |
| 608 |
|
✗ |
return old; |
| 609 |
|
|
} |
| 610 |
|
|
|
| 611 |
|
✗ |
bool jar_xm_mute_instrument(jar_xm_context_t *ctx, uint16_t instr, bool mute) { |
| 612 |
|
✗ |
bool old = ctx->module.instruments[instr - 1].muted; |
| 613 |
|
✗ |
ctx->module.instruments[instr - 1].muted = mute; |
| 614 |
|
✗ |
return old; |
| 615 |
|
|
} |
| 616 |
|
|
|
| 617 |
|
✗ |
const char* jar_xm_get_module_name(jar_xm_context_t *ctx) { |
| 618 |
|
✗ |
return ctx->module.name; |
| 619 |
|
|
} |
| 620 |
|
|
|
| 621 |
|
✗ |
const char* jar_xm_get_tracker_name(jar_xm_context_t *ctx) { |
| 622 |
|
✗ |
return ctx->module.trackername; |
| 623 |
|
|
} |
| 624 |
|
|
|
| 625 |
|
✗ |
uint16_t jar_xm_get_number_of_channels(jar_xm_context_t *ctx) { |
| 626 |
|
✗ |
return ctx->module.num_channels; |
| 627 |
|
|
} |
| 628 |
|
|
|
| 629 |
|
✗ |
uint16_t jar_xm_get_module_length(jar_xm_context_t *ctx) { |
| 630 |
|
✗ |
return ctx->module.length; |
| 631 |
|
|
} |
| 632 |
|
|
|
| 633 |
|
✗ |
uint16_t jar_xm_get_number_of_patterns(jar_xm_context_t *ctx) { |
| 634 |
|
✗ |
return ctx->module.num_patterns; |
| 635 |
|
|
} |
| 636 |
|
|
|
| 637 |
|
✗ |
uint16_t jar_xm_get_number_of_rows(jar_xm_context_t *ctx, uint16_t pattern) { |
| 638 |
|
✗ |
return ctx->module.patterns[pattern].num_rows; |
| 639 |
|
|
} |
| 640 |
|
|
|
| 641 |
|
✗ |
uint16_t jar_xm_get_number_of_instruments(jar_xm_context_t *ctx) { |
| 642 |
|
✗ |
return ctx->module.num_instruments; |
| 643 |
|
|
} |
| 644 |
|
|
|
| 645 |
|
✗ |
uint16_t jar_xm_get_number_of_samples(jar_xm_context_t *ctx, uint16_t instrument) { |
| 646 |
|
✗ |
return ctx->module.instruments[instrument - 1].num_samples; |
| 647 |
|
|
} |
| 648 |
|
|
|
| 649 |
|
✗ |
void jar_xm_get_playing_speed(jar_xm_context_t *ctx, uint16_t *bpm, uint16_t *tempo) { |
| 650 |
|
✗ |
if(bpm) *bpm = ctx->bpm; |
| 651 |
|
✗ |
if(tempo) *tempo = ctx->tempo; |
| 652 |
|
|
} |
| 653 |
|
|
|
| 654 |
|
✗ |
void jar_xm_get_position(jar_xm_context_t *ctx, uint8_t *pattern_index, uint8_t *pattern, uint8_t *row, uint64_t *samples) { |
| 655 |
|
✗ |
if(pattern_index) *pattern_index = ctx->current_table_index; |
| 656 |
|
✗ |
if(pattern) *pattern = ctx->module.pattern_table[ctx->current_table_index]; |
| 657 |
|
✗ |
if(row) *row = ctx->current_row; |
| 658 |
|
✗ |
if(samples) *samples = ctx->generated_samples; |
| 659 |
|
|
} |
| 660 |
|
|
|
| 661 |
|
✗ |
uint64_t jar_xm_get_latest_trigger_of_instrument(jar_xm_context_t *ctx, uint16_t instr) { |
| 662 |
|
✗ |
return ctx->module.instruments[instr - 1].latest_trigger; |
| 663 |
|
|
} |
| 664 |
|
|
|
| 665 |
|
✗ |
uint64_t jar_xm_get_latest_trigger_of_sample(jar_xm_context_t *ctx, uint16_t instr, uint16_t sample) { |
| 666 |
|
✗ |
return ctx->module.instruments[instr - 1].samples[sample].latest_trigger; |
| 667 |
|
|
} |
| 668 |
|
|
|
| 669 |
|
✗ |
uint64_t jar_xm_get_latest_trigger_of_channel(jar_xm_context_t *ctx, uint16_t chn) { |
| 670 |
|
✗ |
return ctx->channels[chn - 1].latest_trigger; |
| 671 |
|
|
} |
| 672 |
|
|
|
| 673 |
|
|
//* .xm files are little-endian. (XXX: Are they really?) |
| 674 |
|
|
|
| 675 |
|
|
//* Bound reader macros. |
| 676 |
|
|
//* If we attempt to read the buffer out-of-bounds, pretend that the buffer is infinitely padded with zeroes. |
| 677 |
|
|
#define READ_U8(offset) (((offset) < moddata_length) ? (*(uint8_t*)(moddata + (offset))) : 0) |
| 678 |
|
|
#define READ_U16(offset) ((uint16_t)READ_U8(offset) | ((uint16_t)READ_U8((offset) + 1) << 8)) |
| 679 |
|
|
#define READ_U32(offset) ((uint32_t)READ_U16(offset) | ((uint32_t)READ_U16((offset) + 2) << 16)) |
| 680 |
|
|
#define READ_MEMCPY(ptr, offset, length) memcpy_pad(ptr, length, moddata, moddata_length, offset) |
| 681 |
|
|
|
| 682 |
|
✗ |
static void memcpy_pad(void *dst, size_t dst_len, const void *src, size_t src_len, size_t offset) { |
| 683 |
|
|
uint8_t *dst_c = dst; |
| 684 |
|
|
const uint8_t *src_c = src; |
| 685 |
|
|
|
| 686 |
|
|
/* how many bytes can be copied without overrunning `src` */ |
| 687 |
|
✗ |
size_t copy_bytes = (src_len >= offset) ? (src_len - offset) : 0; |
| 688 |
|
✗ |
copy_bytes = copy_bytes > dst_len ? dst_len : copy_bytes; |
| 689 |
|
|
|
| 690 |
|
✗ |
memcpy(dst_c, src_c + offset, copy_bytes); |
| 691 |
|
|
/* padded bytes */ |
| 692 |
|
✗ |
memset(dst_c + copy_bytes, 0, dst_len - copy_bytes); |
| 693 |
|
|
} |
| 694 |
|
|
|
| 695 |
|
|
#if JAR_XM_DEFENSIVE |
| 696 |
|
|
|
| 697 |
|
✗ |
int jar_xm_check_sanity_preload(const char* module, size_t module_length) { |
| 698 |
|
✗ |
if(module_length < 60) { return 4; } |
| 699 |
|
✗ |
if(memcmp("Extended Module: ", module, 17) != 0) { return 1; } |
| 700 |
|
✗ |
if(module[37] != 0x1A) { return 2; } |
| 701 |
|
✗ |
if(module[59] != 0x01 || module[58] != 0x04) { return 3; } /* Not XM 1.04 */ |
| 702 |
|
|
return 0; |
| 703 |
|
|
} |
| 704 |
|
|
|
| 705 |
|
✗ |
int jar_xm_check_sanity_postload(jar_xm_context_t* ctx) { |
| 706 |
|
|
/* Check the POT */ |
| 707 |
|
✗ |
for(uint8_t i = 0; i < ctx->module.length; ++i) { |
| 708 |
|
✗ |
if(ctx->module.pattern_table[i] >= ctx->module.num_patterns) { |
| 709 |
|
✗ |
if(i+1 == ctx->module.length && ctx->module.length > 1) { |
| 710 |
|
|
DEBUG("trimming invalid POT at pos %X", i); |
| 711 |
|
✗ |
--ctx->module.length; |
| 712 |
|
|
} else { |
| 713 |
|
|
DEBUG("module has invalid POT, pos %X references nonexistent pattern %X", i, ctx->module.pattern_table[i]); |
| 714 |
|
|
return 1; |
| 715 |
|
|
} |
| 716 |
|
|
} |
| 717 |
|
|
} |
| 718 |
|
|
|
| 719 |
|
|
return 0; |
| 720 |
|
|
} |
| 721 |
|
|
|
| 722 |
|
|
#endif |
| 723 |
|
|
|
| 724 |
|
✗ |
size_t jar_xm_get_memory_needed_for_context(const char* moddata, size_t moddata_length) { |
| 725 |
|
|
size_t memory_needed = 0; |
| 726 |
|
|
size_t offset = 60; /* 60 = Skip the first header */ |
| 727 |
|
|
uint16_t num_channels; |
| 728 |
|
|
uint16_t num_patterns; |
| 729 |
|
|
uint16_t num_instruments; |
| 730 |
|
|
|
| 731 |
|
|
/* Read the module header */ |
| 732 |
|
✗ |
num_channels = READ_U16(offset + 8); |
| 733 |
|
✗ |
num_patterns = READ_U16(offset + 10); |
| 734 |
|
✗ |
memory_needed += num_patterns * sizeof(jar_xm_pattern_t); |
| 735 |
|
✗ |
memory_needed = ALIGN(memory_needed, 16); |
| 736 |
|
✗ |
num_instruments = READ_U16(offset + 12); |
| 737 |
|
✗ |
memory_needed += num_instruments * sizeof(jar_xm_instrument_t); |
| 738 |
|
✗ |
memory_needed = ALIGN(memory_needed, 16); |
| 739 |
|
✗ |
memory_needed += MAX_NUM_ROWS * READ_U16(offset + 4) * sizeof(uint8_t); /* Module length */ |
| 740 |
|
|
|
| 741 |
|
✗ |
offset += READ_U32(offset); /* Header size */ |
| 742 |
|
|
|
| 743 |
|
|
/* Read pattern headers */ |
| 744 |
|
✗ |
for(uint16_t i = 0; i < num_patterns; ++i) { |
| 745 |
|
|
uint16_t num_rows; |
| 746 |
|
✗ |
num_rows = READ_U16(offset + 5); |
| 747 |
|
✗ |
memory_needed += num_rows * num_channels * sizeof(jar_xm_pattern_slot_t); |
| 748 |
|
✗ |
offset += READ_U32(offset) + READ_U16(offset + 7); /* Pattern header length + packed pattern data size */ |
| 749 |
|
|
} |
| 750 |
|
✗ |
memory_needed = ALIGN(memory_needed, 16); |
| 751 |
|
|
|
| 752 |
|
|
/* Read instrument headers */ |
| 753 |
|
✗ |
for(uint16_t i = 0; i < num_instruments; ++i) { |
| 754 |
|
|
uint16_t num_samples; |
| 755 |
|
|
uint32_t sample_header_size = 0; |
| 756 |
|
|
uint32_t sample_size_aggregate = 0; |
| 757 |
|
✗ |
num_samples = READ_U16(offset + 27); |
| 758 |
|
✗ |
memory_needed += num_samples * sizeof(jar_xm_sample_t); |
| 759 |
|
✗ |
if(num_samples > 0) { sample_header_size = READ_U32(offset + 29); } |
| 760 |
|
|
|
| 761 |
|
✗ |
offset += READ_U32(offset); /* Instrument header size */ |
| 762 |
|
✗ |
for(uint16_t j = 0; j < num_samples; ++j) { |
| 763 |
|
|
uint32_t sample_size; |
| 764 |
|
|
uint8_t flags; |
| 765 |
|
✗ |
sample_size = READ_U32(offset); |
| 766 |
|
✗ |
flags = READ_U8(offset + 14); |
| 767 |
|
✗ |
sample_size_aggregate += sample_size; |
| 768 |
|
|
|
| 769 |
|
✗ |
if(flags & (1 << 4)) { /* 16 bit sample */ |
| 770 |
|
✗ |
memory_needed += sample_size * (sizeof(float) >> 1); |
| 771 |
|
|
} else { /* 8 bit sample */ |
| 772 |
|
✗ |
memory_needed += sample_size * sizeof(float); |
| 773 |
|
|
} |
| 774 |
|
✗ |
offset += sample_header_size; |
| 775 |
|
|
} |
| 776 |
|
✗ |
offset += sample_size_aggregate; |
| 777 |
|
|
} |
| 778 |
|
|
|
| 779 |
|
✗ |
memory_needed += num_channels * sizeof(jar_xm_channel_context_t); |
| 780 |
|
✗ |
memory_needed += sizeof(jar_xm_context_t); |
| 781 |
|
✗ |
return memory_needed; |
| 782 |
|
|
} |
| 783 |
|
|
|
| 784 |
|
✗ |
char* jar_xm_load_module(jar_xm_context_t* ctx, const char* moddata, size_t moddata_length, char* mempool) { |
| 785 |
|
|
size_t offset = 0; |
| 786 |
|
|
jar_xm_module_t* mod = &(ctx->module); |
| 787 |
|
|
|
| 788 |
|
|
/* Read XM header */ |
| 789 |
|
✗ |
READ_MEMCPY(mod->name, offset + 17, MODULE_NAME_LENGTH); |
| 790 |
|
✗ |
READ_MEMCPY(mod->trackername, offset + 38, TRACKER_NAME_LENGTH); |
| 791 |
|
|
offset += 60; |
| 792 |
|
|
|
| 793 |
|
|
/* Read module header */ |
| 794 |
|
✗ |
uint32_t header_size = READ_U32(offset); |
| 795 |
|
✗ |
mod->length = READ_U16(offset + 4); |
| 796 |
|
✗ |
mod->restart_position = READ_U16(offset + 6); |
| 797 |
|
✗ |
mod->num_channels = READ_U16(offset + 8); |
| 798 |
|
✗ |
mod->num_patterns = READ_U16(offset + 10); |
| 799 |
|
✗ |
mod->num_instruments = READ_U16(offset + 12); |
| 800 |
|
✗ |
mod->patterns = (jar_xm_pattern_t*)mempool; |
| 801 |
|
✗ |
mod->linear_interpolation = 1; // Linear interpolation can be set after loading |
| 802 |
|
✗ |
mod->ramping = 1; // ramping can be set after loading |
| 803 |
|
✗ |
mempool += mod->num_patterns * sizeof(jar_xm_pattern_t); |
| 804 |
|
✗ |
mempool = ALIGN_PTR(mempool, 16); |
| 805 |
|
✗ |
mod->instruments = (jar_xm_instrument_t*)mempool; |
| 806 |
|
✗ |
mempool += mod->num_instruments * sizeof(jar_xm_instrument_t); |
| 807 |
|
✗ |
mempool = ALIGN_PTR(mempool, 16); |
| 808 |
|
✗ |
uint16_t flags = READ_U32(offset + 14); |
| 809 |
|
✗ |
mod->frequency_type = (flags & (1 << 0)) ? jar_xm_LINEAR_FREQUENCIES : jar_xm_AMIGA_FREQUENCIES; |
| 810 |
|
✗ |
ctx->default_tempo = READ_U16(offset + 16); |
| 811 |
|
✗ |
ctx->default_bpm = READ_U16(offset + 18); |
| 812 |
|
✗ |
ctx->tempo =ctx->default_tempo; |
| 813 |
|
✗ |
ctx->bpm = ctx->default_bpm; |
| 814 |
|
|
|
| 815 |
|
✗ |
READ_MEMCPY(mod->pattern_table, offset + 20, PATTERN_ORDER_TABLE_LENGTH); |
| 816 |
|
✗ |
offset += header_size; |
| 817 |
|
|
|
| 818 |
|
|
/* Read patterns */ |
| 819 |
|
✗ |
for(uint16_t i = 0; i < mod->num_patterns; ++i) { |
| 820 |
|
✗ |
uint16_t packed_patterndata_size = READ_U16(offset + 7); |
| 821 |
|
✗ |
jar_xm_pattern_t* pat = mod->patterns + i; |
| 822 |
|
✗ |
pat->num_rows = READ_U16(offset + 5); |
| 823 |
|
✗ |
pat->slots = (jar_xm_pattern_slot_t*)mempool; |
| 824 |
|
✗ |
mempool += mod->num_channels * pat->num_rows * sizeof(jar_xm_pattern_slot_t); |
| 825 |
|
✗ |
offset += READ_U32(offset); /* Pattern header length */ |
| 826 |
|
|
|
| 827 |
|
✗ |
if(packed_patterndata_size == 0) { /* No pattern data is present */ |
| 828 |
|
✗ |
memset(pat->slots, 0, sizeof(jar_xm_pattern_slot_t) * pat->num_rows * mod->num_channels); |
| 829 |
|
|
} else { |
| 830 |
|
|
/* This isn't your typical for loop */ |
| 831 |
|
✗ |
for(uint16_t j = 0, k = 0; j < packed_patterndata_size; ++k) { |
| 832 |
|
✗ |
uint8_t note = READ_U8(offset + j); |
| 833 |
|
✗ |
jar_xm_pattern_slot_t* slot = pat->slots + k; |
| 834 |
|
✗ |
if(note & (1 << 7)) { |
| 835 |
|
|
/* MSB is set, this is a compressed packet */ |
| 836 |
|
✗ |
++j; |
| 837 |
|
✗ |
if(note & (1 << 0)) { /* Note follows */ |
| 838 |
|
✗ |
slot->note = READ_U8(offset + j); |
| 839 |
|
✗ |
++j; |
| 840 |
|
|
} else { |
| 841 |
|
✗ |
slot->note = 0; |
| 842 |
|
|
} |
| 843 |
|
✗ |
if(note & (1 << 1)) { /* Instrument follows */ |
| 844 |
|
✗ |
slot->instrument = READ_U8(offset + j); |
| 845 |
|
✗ |
++j; |
| 846 |
|
|
} else { |
| 847 |
|
✗ |
slot->instrument = 0; |
| 848 |
|
|
} |
| 849 |
|
✗ |
if(note & (1 << 2)) { /* Volume column follows */ |
| 850 |
|
✗ |
slot->volume_column = READ_U8(offset + j); |
| 851 |
|
✗ |
++j; |
| 852 |
|
|
} else { |
| 853 |
|
✗ |
slot->volume_column = 0; |
| 854 |
|
|
} |
| 855 |
|
✗ |
if(note & (1 << 3)) { /* Effect follows */ |
| 856 |
|
✗ |
slot->effect_type = READ_U8(offset + j); |
| 857 |
|
✗ |
++j; |
| 858 |
|
|
} else { |
| 859 |
|
✗ |
slot->effect_type = 0; |
| 860 |
|
|
} |
| 861 |
|
✗ |
if(note & (1 << 4)) { /* Effect parameter follows */ |
| 862 |
|
✗ |
slot->effect_param = READ_U8(offset + j); |
| 863 |
|
✗ |
++j; |
| 864 |
|
|
} else { |
| 865 |
|
✗ |
slot->effect_param = 0; |
| 866 |
|
|
} |
| 867 |
|
|
} else { /* Uncompressed packet */ |
| 868 |
|
✗ |
slot->note = note; |
| 869 |
|
✗ |
slot->instrument = READ_U8(offset + j + 1); |
| 870 |
|
✗ |
slot->volume_column = READ_U8(offset + j + 2); |
| 871 |
|
✗ |
slot->effect_type = READ_U8(offset + j + 3); |
| 872 |
|
✗ |
slot->effect_param = READ_U8(offset + j + 4); |
| 873 |
|
✗ |
j += 5; |
| 874 |
|
|
} |
| 875 |
|
|
} |
| 876 |
|
|
} |
| 877 |
|
|
|
| 878 |
|
✗ |
offset += packed_patterndata_size; |
| 879 |
|
|
} |
| 880 |
|
✗ |
mempool = ALIGN_PTR(mempool, 16); |
| 881 |
|
|
|
| 882 |
|
|
/* Read instruments */ |
| 883 |
|
✗ |
for(uint16_t i = 0; i < ctx->module.num_instruments; ++i) { |
| 884 |
|
|
uint32_t sample_header_size = 0; |
| 885 |
|
✗ |
jar_xm_instrument_t* instr = mod->instruments + i; |
| 886 |
|
|
|
| 887 |
|
✗ |
READ_MEMCPY(instr->name, offset + 4, INSTRUMENT_NAME_LENGTH); |
| 888 |
|
✗ |
instr->num_samples = READ_U16(offset + 27); |
| 889 |
|
|
|
| 890 |
|
✗ |
if(instr->num_samples > 0) { |
| 891 |
|
|
/* Read extra header properties */ |
| 892 |
|
✗ |
sample_header_size = READ_U32(offset + 29); |
| 893 |
|
✗ |
READ_MEMCPY(instr->sample_of_notes, offset + 33, NUM_NOTES); |
| 894 |
|
|
|
| 895 |
|
✗ |
instr->volume_envelope.num_points = READ_U8(offset + 225); |
| 896 |
|
✗ |
instr->panning_envelope.num_points = READ_U8(offset + 226); |
| 897 |
|
|
|
| 898 |
|
✗ |
for(uint8_t j = 0; j < instr->volume_envelope.num_points; ++j) { |
| 899 |
|
✗ |
instr->volume_envelope.points[j].frame = READ_U16(offset + 129 + 4 * j); |
| 900 |
|
✗ |
instr->volume_envelope.points[j].value = READ_U16(offset + 129 + 4 * j + 2); |
| 901 |
|
|
} |
| 902 |
|
|
|
| 903 |
|
✗ |
for(uint8_t j = 0; j < instr->panning_envelope.num_points; ++j) { |
| 904 |
|
✗ |
instr->panning_envelope.points[j].frame = READ_U16(offset + 177 + 4 * j); |
| 905 |
|
✗ |
instr->panning_envelope.points[j].value = READ_U16(offset + 177 + 4 * j + 2); |
| 906 |
|
|
} |
| 907 |
|
|
|
| 908 |
|
✗ |
instr->volume_envelope.sustain_point = READ_U8(offset + 227); |
| 909 |
|
✗ |
instr->volume_envelope.loop_start_point = READ_U8(offset + 228); |
| 910 |
|
✗ |
instr->volume_envelope.loop_end_point = READ_U8(offset + 229); |
| 911 |
|
✗ |
instr->panning_envelope.sustain_point = READ_U8(offset + 230); |
| 912 |
|
✗ |
instr->panning_envelope.loop_start_point = READ_U8(offset + 231); |
| 913 |
|
✗ |
instr->panning_envelope.loop_end_point = READ_U8(offset + 232); |
| 914 |
|
|
|
| 915 |
|
✗ |
uint8_t flags = READ_U8(offset + 233); |
| 916 |
|
✗ |
instr->volume_envelope.enabled = flags & (1 << 0); |
| 917 |
|
✗ |
instr->volume_envelope.sustain_enabled = flags & (1 << 1); |
| 918 |
|
✗ |
instr->volume_envelope.loop_enabled = flags & (1 << 2); |
| 919 |
|
|
|
| 920 |
|
✗ |
flags = READ_U8(offset + 234); |
| 921 |
|
✗ |
instr->panning_envelope.enabled = flags & (1 << 0); |
| 922 |
|
✗ |
instr->panning_envelope.sustain_enabled = flags & (1 << 1); |
| 923 |
|
✗ |
instr->panning_envelope.loop_enabled = flags & (1 << 2); |
| 924 |
|
✗ |
instr->vibrato_type = READ_U8(offset + 235); |
| 925 |
|
✗ |
if(instr->vibrato_type == 2) { |
| 926 |
|
✗ |
instr->vibrato_type = 1; |
| 927 |
|
✗ |
} else if(instr->vibrato_type == 1) { |
| 928 |
|
✗ |
instr->vibrato_type = 2; |
| 929 |
|
|
} |
| 930 |
|
✗ |
instr->vibrato_sweep = READ_U8(offset + 236); |
| 931 |
|
✗ |
instr->vibrato_depth = READ_U8(offset + 237); |
| 932 |
|
✗ |
instr->vibrato_rate = READ_U8(offset + 238); |
| 933 |
|
✗ |
instr->volume_fadeout = READ_U16(offset + 239); |
| 934 |
|
✗ |
instr->samples = (jar_xm_sample_t*)mempool; |
| 935 |
|
✗ |
mempool += instr->num_samples * sizeof(jar_xm_sample_t); |
| 936 |
|
|
} else { |
| 937 |
|
✗ |
instr->samples = NULL; |
| 938 |
|
|
} |
| 939 |
|
|
|
| 940 |
|
|
/* Instrument header size */ |
| 941 |
|
✗ |
offset += READ_U32(offset); |
| 942 |
|
|
|
| 943 |
|
✗ |
for(int j = 0; j < instr->num_samples; ++j) { |
| 944 |
|
|
/* Read sample header */ |
| 945 |
|
✗ |
jar_xm_sample_t* sample = instr->samples + j; |
| 946 |
|
|
|
| 947 |
|
✗ |
sample->length = READ_U32(offset); |
| 948 |
|
✗ |
sample->loop_start = READ_U32(offset + 4); |
| 949 |
|
✗ |
sample->loop_length = READ_U32(offset + 8); |
| 950 |
|
✗ |
sample->loop_end = sample->loop_start + sample->loop_length; |
| 951 |
|
✗ |
sample->volume = (float)(READ_U8(offset + 12) << 2) / 256.f; |
| 952 |
|
✗ |
if (sample->volume > 1.0f) {sample->volume = 1.f;}; |
| 953 |
|
✗ |
sample->finetune = (int8_t)READ_U8(offset + 13); |
| 954 |
|
|
|
| 955 |
|
✗ |
uint8_t flags = READ_U8(offset + 14); |
| 956 |
|
✗ |
switch (flags & 3) { |
| 957 |
|
|
case 2: |
| 958 |
|
|
case 3: |
| 959 |
|
|
sample->loop_type = jar_xm_PING_PONG_LOOP; |
| 960 |
|
✗ |
case 1: |
| 961 |
|
✗ |
sample->loop_type = jar_xm_FORWARD_LOOP; |
| 962 |
|
✗ |
break; |
| 963 |
|
✗ |
default: |
| 964 |
|
✗ |
sample->loop_type = jar_xm_NO_LOOP; |
| 965 |
|
✗ |
break; |
| 966 |
|
|
}; |
| 967 |
|
✗ |
sample->bits = (flags & 0x10) ? 16 : 8; |
| 968 |
|
✗ |
sample->stereo = (flags & 0x20) ? 1 : 0; |
| 969 |
|
✗ |
sample->panning = (float)READ_U8(offset + 15) / 255.f; |
| 970 |
|
✗ |
sample->relative_note = (int8_t)READ_U8(offset + 16); |
| 971 |
|
✗ |
READ_MEMCPY(sample->name, 18, SAMPLE_NAME_LENGTH); |
| 972 |
|
✗ |
sample->data = (float*)mempool; |
| 973 |
|
✗ |
if(sample->bits == 16) { |
| 974 |
|
|
/* 16 bit sample */ |
| 975 |
|
✗ |
mempool += sample->length * (sizeof(float) >> 1); |
| 976 |
|
✗ |
sample->loop_start >>= 1; |
| 977 |
|
✗ |
sample->loop_length >>= 1; |
| 978 |
|
✗ |
sample->loop_end >>= 1; |
| 979 |
|
✗ |
sample->length >>= 1; |
| 980 |
|
|
} else { |
| 981 |
|
|
/* 8 bit sample */ |
| 982 |
|
✗ |
mempool += sample->length * sizeof(float); |
| 983 |
|
|
} |
| 984 |
|
|
// Adjust loop points to reflect half of the reported length (stereo) |
| 985 |
|
✗ |
if (sample->stereo && sample->loop_type != jar_xm_NO_LOOP) { |
| 986 |
|
✗ |
div_t lstart = div(READ_U32(offset + 4), 2); |
| 987 |
|
✗ |
sample->loop_start = lstart.quot; |
| 988 |
|
✗ |
div_t llength = div(READ_U32(offset + 8), 2); |
| 989 |
|
✗ |
sample->loop_length = llength.quot; |
| 990 |
|
✗ |
sample->loop_end = sample->loop_start + sample->loop_length; |
| 991 |
|
|
}; |
| 992 |
|
|
|
| 993 |
|
✗ |
offset += sample_header_size; |
| 994 |
|
|
} |
| 995 |
|
|
|
| 996 |
|
|
// Read all samples and convert them to float values |
| 997 |
|
✗ |
for(int j = 0; j < instr->num_samples; ++j) { |
| 998 |
|
|
/* Read sample data */ |
| 999 |
|
✗ |
jar_xm_sample_t* sample = instr->samples + j; |
| 1000 |
|
✗ |
int length = sample->length; |
| 1001 |
|
✗ |
if (sample->stereo) { |
| 1002 |
|
|
// Since it is stereo, we cut the sample in half (treated as single channel) |
| 1003 |
|
✗ |
div_t result = div(sample->length, 2); |
| 1004 |
|
✗ |
if(sample->bits == 16) { |
| 1005 |
|
|
int16_t v = 0; |
| 1006 |
|
✗ |
for(int k = 0; k < length; ++k) { |
| 1007 |
|
✗ |
if (k == result.quot) { v = 0;}; |
| 1008 |
|
✗ |
v = v + (int16_t)READ_U16(offset + (k << 1)); |
| 1009 |
|
✗ |
sample->data[k] = (float) v / 32768.f ;//* sign; |
| 1010 |
|
✗ |
if(sample->data[k] < -1.0) {sample->data[k] = -1.0;} else if(sample->data[k] > 1.0) {sample->data[k] = 1.0;}; |
| 1011 |
|
|
} |
| 1012 |
|
✗ |
offset += sample->length << 1; |
| 1013 |
|
|
} else { |
| 1014 |
|
|
int8_t v = 0; |
| 1015 |
|
✗ |
for(int k = 0; k < length; ++k) { |
| 1016 |
|
✗ |
if (k == result.quot) { v = 0;}; |
| 1017 |
|
✗ |
v = v + (int8_t)READ_U8(offset + k); |
| 1018 |
|
✗ |
sample->data[k] = (float)v / 128.f ;//* sign; |
| 1019 |
|
✗ |
if(sample->data[k] < -1.0) {sample->data[k] = -1.0;} else if(sample->data[k] > 1.0) {sample->data[k] = 1.0;}; |
| 1020 |
|
|
} |
| 1021 |
|
✗ |
offset += sample->length; |
| 1022 |
|
|
}; |
| 1023 |
|
✗ |
sample->length = result.quot; |
| 1024 |
|
|
} else { |
| 1025 |
|
✗ |
if(sample->bits == 16) { |
| 1026 |
|
|
int16_t v = 0; |
| 1027 |
|
✗ |
for(int k = 0; k < length; ++k) { |
| 1028 |
|
✗ |
v = v + (int16_t)READ_U16(offset + (k << 1)); |
| 1029 |
|
✗ |
sample->data[k] = (float) v / 32768.f ;//* sign; |
| 1030 |
|
✗ |
if(sample->data[k] < -1.0) {sample->data[k] = -1.0;} else if(sample->data[k] > 1.0) {sample->data[k] = 1.0;}; |
| 1031 |
|
|
} |
| 1032 |
|
✗ |
offset += sample->length << 1; |
| 1033 |
|
|
} else { |
| 1034 |
|
|
int8_t v = 0; |
| 1035 |
|
✗ |
for(int k = 0; k < length; ++k) { |
| 1036 |
|
✗ |
v = v + (int8_t)READ_U8(offset + k); |
| 1037 |
|
✗ |
sample->data[k] = (float)v / 128.f ;//* sign; |
| 1038 |
|
✗ |
if(sample->data[k] < -1.0) {sample->data[k] = -1.0;} else if(sample->data[k] > 1.0) {sample->data[k] = 1.0;}; |
| 1039 |
|
|
} |
| 1040 |
|
✗ |
offset += sample->length; |
| 1041 |
|
|
} |
| 1042 |
|
|
} |
| 1043 |
|
|
}; |
| 1044 |
|
|
}; |
| 1045 |
|
✗ |
return mempool; |
| 1046 |
|
|
}; |
| 1047 |
|
|
|
| 1048 |
|
|
//------------------------------------------------------------------------------- |
| 1049 |
|
|
//THE FOLLOWING IS FOR PLAYING |
| 1050 |
|
|
static float jar_xm_waveform(jar_xm_waveform_type_t, uint8_t); |
| 1051 |
|
|
static void jar_xm_autovibrato(jar_xm_context_t*, jar_xm_channel_context_t*); |
| 1052 |
|
|
static void jar_xm_vibrato(jar_xm_context_t*, jar_xm_channel_context_t*, uint8_t, uint16_t); |
| 1053 |
|
|
static void jar_xm_tremolo(jar_xm_context_t*, jar_xm_channel_context_t*, uint8_t, uint16_t); |
| 1054 |
|
|
static void jar_xm_arpeggio(jar_xm_context_t*, jar_xm_channel_context_t*, uint8_t, uint16_t); |
| 1055 |
|
|
static void jar_xm_tone_portamento(jar_xm_context_t*, jar_xm_channel_context_t*); |
| 1056 |
|
|
static void jar_xm_pitch_slide(jar_xm_context_t*, jar_xm_channel_context_t*, float); |
| 1057 |
|
|
static void jar_xm_panning_slide(jar_xm_channel_context_t*, uint8_t); |
| 1058 |
|
|
static void jar_xm_volume_slide(jar_xm_channel_context_t*, uint8_t); |
| 1059 |
|
|
|
| 1060 |
|
|
static float jar_xm_envelope_lerp(jar_xm_envelope_point_t*, jar_xm_envelope_point_t*, uint16_t); |
| 1061 |
|
|
static void jar_xm_envelope_tick(jar_xm_channel_context_t*, jar_xm_envelope_t*, uint16_t*, float*); |
| 1062 |
|
|
static void jar_xm_envelopes(jar_xm_channel_context_t*); |
| 1063 |
|
|
|
| 1064 |
|
|
static float jar_xm_linear_period(float); |
| 1065 |
|
|
static float jar_xm_linear_frequency(float); |
| 1066 |
|
|
static float jar_xm_amiga_period(float); |
| 1067 |
|
|
static float jar_xm_amiga_frequency(float); |
| 1068 |
|
|
static float jar_xm_period(jar_xm_context_t*, float); |
| 1069 |
|
|
static float jar_xm_frequency(jar_xm_context_t*, float, float); |
| 1070 |
|
|
static void jar_xm_update_frequency(jar_xm_context_t*, jar_xm_channel_context_t*); |
| 1071 |
|
|
|
| 1072 |
|
|
static void jar_xm_handle_note_and_instrument(jar_xm_context_t*, jar_xm_channel_context_t*, jar_xm_pattern_slot_t*); |
| 1073 |
|
|
static void jar_xm_trigger_note(jar_xm_context_t*, jar_xm_channel_context_t*, unsigned int flags); |
| 1074 |
|
|
static void jar_xm_cut_note(jar_xm_channel_context_t*); |
| 1075 |
|
|
static void jar_xm_key_off(jar_xm_channel_context_t*); |
| 1076 |
|
|
|
| 1077 |
|
|
static void jar_xm_post_pattern_change(jar_xm_context_t*); |
| 1078 |
|
|
static void jar_xm_row(jar_xm_context_t*); |
| 1079 |
|
|
static void jar_xm_tick(jar_xm_context_t*); |
| 1080 |
|
|
|
| 1081 |
|
|
static void jar_xm_next_of_sample(jar_xm_context_t*, jar_xm_channel_context_t*, int); |
| 1082 |
|
|
static void jar_xm_mixdown(jar_xm_context_t*, float*, float*); |
| 1083 |
|
|
|
| 1084 |
|
|
#define jar_xm_TRIGGER_KEEP_VOLUME (1 << 0) |
| 1085 |
|
|
#define jar_xm_TRIGGER_KEEP_PERIOD (1 << 1) |
| 1086 |
|
|
#define jar_xm_TRIGGER_KEEP_SAMPLE_POSITION (1 << 2) |
| 1087 |
|
|
|
| 1088 |
|
|
// C-2, C#2, D-2, D#2, E-2, F-2, F#2, G-2, G#2, A-2, A#2, B-2, C-3 |
| 1089 |
|
|
static const uint16_t amiga_frequencies[] = { 1712, 1616, 1525, 1440, 1357, 1281, 1209, 1141, 1077, 1017, 961, 907, 856 }; |
| 1090 |
|
|
|
| 1091 |
|
|
// 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, b, c, d, e, f |
| 1092 |
|
|
static const float multi_retrig_add[] = { 0.f, -1.f, -2.f, -4.f, -8.f, -16.f, 0.f, 0.f, 0.f, 1.f, 2.f, 4.f, 8.f, 16.f, 0.f, 0.f }; |
| 1093 |
|
|
|
| 1094 |
|
|
// 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, b, c, d, e, f |
| 1095 |
|
|
static const float multi_retrig_multiply[] = { 1.f, 1.f, 1.f, 1.f, 1.f, 1.f, .6666667f, .5f, 1.f, 1.f, 1.f, 1.f, 1.f, 1.f, 1.5f, 2.f }; |
| 1096 |
|
|
|
| 1097 |
|
|
#define jar_xm_CLAMP_UP1F(vol, limit) do { \ |
| 1098 |
|
|
if((vol) > (limit)) (vol) = (limit); \ |
| 1099 |
|
|
} while(0) |
| 1100 |
|
|
#define jar_xm_CLAMP_UP(vol) jar_xm_CLAMP_UP1F((vol), 1.f) |
| 1101 |
|
|
|
| 1102 |
|
|
#define jar_xm_CLAMP_DOWN1F(vol, limit) do { \ |
| 1103 |
|
|
if((vol) < (limit)) (vol) = (limit); \ |
| 1104 |
|
|
} while(0) |
| 1105 |
|
|
#define jar_xm_CLAMP_DOWN(vol) jar_xm_CLAMP_DOWN1F((vol), .0f) |
| 1106 |
|
|
|
| 1107 |
|
|
#define jar_xm_CLAMP2F(vol, up, down) do { \ |
| 1108 |
|
|
if((vol) > (up)) (vol) = (up); \ |
| 1109 |
|
|
else if((vol) < (down)) (vol) = (down); \ |
| 1110 |
|
|
} while(0) |
| 1111 |
|
|
#define jar_xm_CLAMP(vol) jar_xm_CLAMP2F((vol), 1.f, .0f) |
| 1112 |
|
|
|
| 1113 |
|
|
#define jar_xm_SLIDE_TOWARDS(val, goal, incr) do { \ |
| 1114 |
|
|
if((val) > (goal)) { \ |
| 1115 |
|
|
(val) -= (incr); \ |
| 1116 |
|
|
jar_xm_CLAMP_DOWN1F((val), (goal)); \ |
| 1117 |
|
|
} else if((val) < (goal)) { \ |
| 1118 |
|
|
(val) += (incr); \ |
| 1119 |
|
|
jar_xm_CLAMP_UP1F((val), (goal)); \ |
| 1120 |
|
|
} \ |
| 1121 |
|
|
} while(0) |
| 1122 |
|
|
|
| 1123 |
|
|
#define jar_xm_LERP(u, v, t) ((u) + (t) * ((v) - (u))) |
| 1124 |
|
|
#define jar_xm_INVERSE_LERP(u, v, lerp) (((lerp) - (u)) / ((v) - (u))) |
| 1125 |
|
|
|
| 1126 |
|
|
#define HAS_TONE_PORTAMENTO(s) ((s)->effect_type == 3 \ |
| 1127 |
|
|
|| (s)->effect_type == 5 \ |
| 1128 |
|
|
|| ((s)->volume_column >> 4) == 0xF) |
| 1129 |
|
|
#define HAS_ARPEGGIO(s) ((s)->effect_type == 0 \ |
| 1130 |
|
|
&& (s)->effect_param != 0) |
| 1131 |
|
|
#define HAS_VIBRATO(s) ((s)->effect_type == 4 \ |
| 1132 |
|
|
|| (s)->effect_param == 6 \ |
| 1133 |
|
|
|| ((s)->volume_column >> 4) == 0xB) |
| 1134 |
|
|
#define NOTE_IS_VALID(n) ((n) > 0 && (n) < 97) |
| 1135 |
|
|
#define NOTE_OFF 97 |
| 1136 |
|
|
|
| 1137 |
|
✗ |
static float jar_xm_waveform(jar_xm_waveform_type_t waveform, uint8_t step) { |
| 1138 |
|
|
static unsigned int next_rand = 24492; |
| 1139 |
|
✗ |
step %= 0x40; |
| 1140 |
|
✗ |
switch(waveform) { |
| 1141 |
|
✗ |
case jar_xm_SINE_WAVEFORM: /* No SIN() table used, direct calculation. */ |
| 1142 |
|
✗ |
return -sinf(2.f * 3.141592f * (float)step / (float)0x40); |
| 1143 |
|
✗ |
case jar_xm_RAMP_DOWN_WAVEFORM: /* Ramp down: 1.0f when step = 0; -1.0f when step = 0x40 */ |
| 1144 |
|
✗ |
return (float)(0x20 - step) / 0x20; |
| 1145 |
|
✗ |
case jar_xm_SQUARE_WAVEFORM: /* Square with a 50% duty */ |
| 1146 |
|
✗ |
return (step >= 0x20) ? 1.f : -1.f; |
| 1147 |
|
✗ |
case jar_xm_RANDOM_WAVEFORM: /* Use the POSIX.1-2001 example, just to be deterministic across different machines */ |
| 1148 |
|
✗ |
next_rand = next_rand * 1103515245 + 12345; |
| 1149 |
|
✗ |
return (float)((next_rand >> 16) & 0x7FFF) / (float)0x4000 - 1.f; |
| 1150 |
|
✗ |
case jar_xm_RAMP_UP_WAVEFORM: /* Ramp up: -1.f when step = 0; 1.f when step = 0x40 */ |
| 1151 |
|
✗ |
return (float)(step - 0x20) / 0x20; |
| 1152 |
|
|
default: |
| 1153 |
|
|
break; |
| 1154 |
|
|
} |
| 1155 |
|
|
return .0f; |
| 1156 |
|
|
} |
| 1157 |
|
|
|
| 1158 |
|
✗ |
static void jar_xm_autovibrato(jar_xm_context_t* ctx, jar_xm_channel_context_t* ch) { |
| 1159 |
|
✗ |
if(ch->instrument == NULL || ch->instrument->vibrato_depth == 0) return; |
| 1160 |
|
|
jar_xm_instrument_t* instr = ch->instrument; |
| 1161 |
|
|
float sweep = 1.f; |
| 1162 |
|
✗ |
if(ch->autovibrato_ticks < instr->vibrato_sweep) { sweep = jar_xm_LERP(0.f, 1.f, (float)ch->autovibrato_ticks / (float)instr->vibrato_sweep); } |
| 1163 |
|
✗ |
unsigned int step = ((ch->autovibrato_ticks++) * instr->vibrato_rate) >> 2; |
| 1164 |
|
✗ |
ch->autovibrato_note_offset = .25f * jar_xm_waveform(instr->vibrato_type, step) * (float)instr->vibrato_depth / (float)0xF * sweep; |
| 1165 |
|
✗ |
jar_xm_update_frequency(ctx, ch); |
| 1166 |
|
|
} |
| 1167 |
|
|
|
| 1168 |
|
✗ |
static void jar_xm_vibrato(jar_xm_context_t* ctx, jar_xm_channel_context_t* ch, uint8_t param, uint16_t pos) { |
| 1169 |
|
✗ |
unsigned int step = pos * (param >> 4); |
| 1170 |
|
✗ |
ch->vibrato_note_offset = 2.f * jar_xm_waveform(ch->vibrato_waveform, step) * (float)(param & 0x0F) / (float)0xF; |
| 1171 |
|
✗ |
jar_xm_update_frequency(ctx, ch); |
| 1172 |
|
|
} |
| 1173 |
|
|
|
| 1174 |
|
✗ |
static void jar_xm_tremolo(jar_xm_context_t* ctx, jar_xm_channel_context_t* ch, uint8_t param, uint16_t pos) { |
| 1175 |
|
✗ |
unsigned int step = pos * (param >> 4); |
| 1176 |
|
✗ |
ch->tremolo_volume = -1.f * jar_xm_waveform(ch->tremolo_waveform, step) * (float)(param & 0x0F) / (float)0xF; |
| 1177 |
|
|
} |
| 1178 |
|
|
|
| 1179 |
|
✗ |
static void jar_xm_arpeggio(jar_xm_context_t* ctx, jar_xm_channel_context_t* ch, uint8_t param, uint16_t tick) { |
| 1180 |
|
✗ |
switch(tick % 3) { |
| 1181 |
|
✗ |
case 0: |
| 1182 |
|
✗ |
ch->arp_in_progress = false; |
| 1183 |
|
✗ |
ch->arp_note_offset = 0; |
| 1184 |
|
✗ |
break; |
| 1185 |
|
✗ |
case 2: |
| 1186 |
|
✗ |
ch->arp_in_progress = true; |
| 1187 |
|
✗ |
ch->arp_note_offset = param >> 4; |
| 1188 |
|
✗ |
break; |
| 1189 |
|
✗ |
case 1: |
| 1190 |
|
✗ |
ch->arp_in_progress = true; |
| 1191 |
|
✗ |
ch->arp_note_offset = param & 0x0F; |
| 1192 |
|
✗ |
break; |
| 1193 |
|
|
} |
| 1194 |
|
✗ |
jar_xm_update_frequency(ctx, ch); |
| 1195 |
|
|
} |
| 1196 |
|
|
|
| 1197 |
|
✗ |
static void jar_xm_tone_portamento(jar_xm_context_t* ctx, jar_xm_channel_context_t* ch) { |
| 1198 |
|
|
/* 3xx called without a note, wait until we get an actual target note. */ |
| 1199 |
|
✗ |
if(ch->tone_portamento_target_period == 0.f) return; /* no value, exit */ |
| 1200 |
|
✗ |
if(ch->period != ch->tone_portamento_target_period) { |
| 1201 |
|
✗ |
jar_xm_SLIDE_TOWARDS(ch->period, ch->tone_portamento_target_period, (ctx->module.frequency_type == jar_xm_LINEAR_FREQUENCIES ? 4.f : 1.f) * ch->tone_portamento_param); |
| 1202 |
|
✗ |
jar_xm_update_frequency(ctx, ch); |
| 1203 |
|
|
} |
| 1204 |
|
|
} |
| 1205 |
|
|
|
| 1206 |
|
|
static void jar_xm_pitch_slide(jar_xm_context_t* ctx, jar_xm_channel_context_t* ch, float period_offset) { |
| 1207 |
|
|
/* Don't ask about the 4.f coefficient. I found mention of it nowhere. Found by earâ„¢. */ |
| 1208 |
|
✗ |
if(ctx->module.frequency_type == jar_xm_LINEAR_FREQUENCIES) {period_offset *= 4.f; } |
| 1209 |
|
✗ |
ch->period += period_offset; |
| 1210 |
|
✗ |
jar_xm_CLAMP_DOWN(ch->period); |
| 1211 |
|
|
/* XXX: upper bound of period ? */ |
| 1212 |
|
✗ |
jar_xm_update_frequency(ctx, ch); |
| 1213 |
|
|
} |
| 1214 |
|
|
|
| 1215 |
|
|
static void jar_xm_panning_slide(jar_xm_channel_context_t* ch, uint8_t rawval) { |
| 1216 |
|
✗ |
if (rawval & 0xF0) {ch->panning += (float)((rawval & 0xF0 )>> 4) / (float)0xFF;}; |
| 1217 |
|
✗ |
if (rawval & 0x0F) {ch->panning -= (float)(rawval & 0x0F) / (float)0xFF;}; |
| 1218 |
|
|
}; |
| 1219 |
|
|
|
| 1220 |
|
|
static void jar_xm_volume_slide(jar_xm_channel_context_t* ch, uint8_t rawval) { |
| 1221 |
|
✗ |
if (rawval & 0xF0) {ch->volume += (float)((rawval & 0xF0) >> 4) / (float)0x40;}; |
| 1222 |
|
✗ |
if (rawval & 0x0F) {ch->volume -= (float)(rawval & 0x0F) / (float)0x40;}; |
| 1223 |
|
|
}; |
| 1224 |
|
|
|
| 1225 |
|
✗ |
static float jar_xm_envelope_lerp(jar_xm_envelope_point_t* a, jar_xm_envelope_point_t* b, uint16_t pos) { |
| 1226 |
|
|
/* Linear interpolation between two envelope points */ |
| 1227 |
|
✗ |
if(pos <= a->frame) return a->value; |
| 1228 |
|
✗ |
else if(pos >= b->frame) return b->value; |
| 1229 |
|
|
else { |
| 1230 |
|
✗ |
float p = (float)(pos - a->frame) / (float)(b->frame - a->frame); |
| 1231 |
|
✗ |
return a->value * (1 - p) + b->value * p; |
| 1232 |
|
|
} |
| 1233 |
|
|
} |
| 1234 |
|
|
|
| 1235 |
|
|
static void jar_xm_post_pattern_change(jar_xm_context_t* ctx) { |
| 1236 |
|
|
/* Loop if necessary */ |
| 1237 |
|
✗ |
if(ctx->current_table_index >= ctx->module.length) { |
| 1238 |
|
✗ |
ctx->current_table_index = ctx->module.restart_position; |
| 1239 |
|
✗ |
ctx->tempo =ctx->default_tempo; // reset to file default value |
| 1240 |
|
✗ |
ctx->bpm = ctx->default_bpm; // reset to file default value |
| 1241 |
|
✗ |
ctx->global_volume = ctx->default_global_volume; // reset to file default value |
| 1242 |
|
|
} |
| 1243 |
|
|
} |
| 1244 |
|
|
|
| 1245 |
|
|
static float jar_xm_linear_period(float note) { |
| 1246 |
|
✗ |
return 7680.f - note * 64.f; |
| 1247 |
|
|
} |
| 1248 |
|
|
|
| 1249 |
|
|
static float jar_xm_linear_frequency(float period) { |
| 1250 |
|
✗ |
return 8363.f * powf(2.f, (4608.f - period) / 768.f); |
| 1251 |
|
|
} |
| 1252 |
|
|
|
| 1253 |
|
✗ |
static float jar_xm_amiga_period(float note) { |
| 1254 |
|
✗ |
unsigned int intnote = note; |
| 1255 |
|
✗ |
uint8_t a = intnote % 12; |
| 1256 |
|
✗ |
int8_t octave = note / 12.f - 2; |
| 1257 |
|
✗ |
uint16_t p1 = amiga_frequencies[a], p2 = amiga_frequencies[a + 1]; |
| 1258 |
|
✗ |
if(octave > 0) { |
| 1259 |
|
✗ |
p1 >>= octave; |
| 1260 |
|
✗ |
p2 >>= octave; |
| 1261 |
|
✗ |
} else if(octave < 0) { |
| 1262 |
|
✗ |
p1 <<= -octave; |
| 1263 |
|
✗ |
p2 <<= -octave; |
| 1264 |
|
|
} |
| 1265 |
|
✗ |
return jar_xm_LERP(p1, p2, note - intnote); |
| 1266 |
|
|
} |
| 1267 |
|
|
|
| 1268 |
|
|
static float jar_xm_amiga_frequency(float period) { |
| 1269 |
|
✗ |
if(period == .0f) return .0f; |
| 1270 |
|
✗ |
return 7093789.2f / (period * 2.f); /* This is the PAL value. (we could use the NTSC value also) */ |
| 1271 |
|
|
} |
| 1272 |
|
|
|
| 1273 |
|
✗ |
static float jar_xm_period(jar_xm_context_t* ctx, float note) { |
| 1274 |
|
✗ |
switch(ctx->module.frequency_type) { |
| 1275 |
|
|
case jar_xm_LINEAR_FREQUENCIES: |
| 1276 |
|
✗ |
return jar_xm_linear_period(note); |
| 1277 |
|
✗ |
case jar_xm_AMIGA_FREQUENCIES: |
| 1278 |
|
✗ |
return jar_xm_amiga_period(note); |
| 1279 |
|
|
} |
| 1280 |
|
|
return .0f; |
| 1281 |
|
|
} |
| 1282 |
|
|
|
| 1283 |
|
✗ |
static float jar_xm_frequency(jar_xm_context_t* ctx, float period, float note_offset) { |
| 1284 |
|
✗ |
switch(ctx->module.frequency_type) { |
| 1285 |
|
✗ |
case jar_xm_LINEAR_FREQUENCIES: |
| 1286 |
|
✗ |
return jar_xm_linear_frequency(period - 64.f * note_offset); |
| 1287 |
|
✗ |
case jar_xm_AMIGA_FREQUENCIES: |
| 1288 |
|
✗ |
if(note_offset == 0) { return jar_xm_amiga_frequency(period); }; |
| 1289 |
|
|
int8_t octave; |
| 1290 |
|
|
float note; |
| 1291 |
|
|
uint16_t p1, p2; |
| 1292 |
|
|
uint8_t a = octave = 0; |
| 1293 |
|
|
|
| 1294 |
|
|
/* Find the octave of the current period */ |
| 1295 |
|
✗ |
if(period > amiga_frequencies[0]) { |
| 1296 |
|
|
--octave; |
| 1297 |
|
✗ |
while(period > (amiga_frequencies[0] << -octave)) --octave; |
| 1298 |
|
✗ |
} else if(period < amiga_frequencies[12]) { |
| 1299 |
|
|
++octave; |
| 1300 |
|
✗ |
while(period < (amiga_frequencies[12] >> octave)) ++octave; |
| 1301 |
|
|
} |
| 1302 |
|
|
|
| 1303 |
|
|
/* Find the smallest note closest to the current period */ |
| 1304 |
|
✗ |
for(uint8_t i = 0; i < 12; ++i) { |
| 1305 |
|
✗ |
p1 = amiga_frequencies[i], p2 = amiga_frequencies[i + 1]; |
| 1306 |
|
✗ |
if(octave > 0) { |
| 1307 |
|
✗ |
p1 >>= octave; |
| 1308 |
|
✗ |
p2 >>= octave; |
| 1309 |
|
✗ |
} else if(octave < 0) { |
| 1310 |
|
✗ |
p1 <<= (-octave); |
| 1311 |
|
✗ |
p2 <<= (-octave); |
| 1312 |
|
|
} |
| 1313 |
|
✗ |
if(p2 <= period && period <= p1) { |
| 1314 |
|
|
a = i; |
| 1315 |
|
|
break; |
| 1316 |
|
|
} |
| 1317 |
|
|
} |
| 1318 |
|
|
if(JAR_XM_DEBUG && (p1 < period || p2 > period)) { DEBUG("%i <= %f <= %i should hold but doesn't, this is a bug", p2, period, p1); } |
| 1319 |
|
✗ |
note = 12.f * (octave + 2) + a + jar_xm_INVERSE_LERP(p1, p2, period); |
| 1320 |
|
✗ |
return jar_xm_amiga_frequency(jar_xm_amiga_period(note + note_offset)); |
| 1321 |
|
|
} |
| 1322 |
|
|
|
| 1323 |
|
|
return .0f; |
| 1324 |
|
|
} |
| 1325 |
|
|
|
| 1326 |
|
✗ |
static void jar_xm_update_frequency(jar_xm_context_t* ctx, jar_xm_channel_context_t* ch) { |
| 1327 |
|
✗ |
ch->frequency = jar_xm_frequency( ctx, ch->period, (ch->arp_note_offset > 0 ? ch->arp_note_offset : ( ch->vibrato_note_offset + ch->autovibrato_note_offset )) ); |
| 1328 |
|
✗ |
ch->step = ch->frequency / ctx->rate; |
| 1329 |
|
|
} |
| 1330 |
|
|
|
| 1331 |
|
✗ |
static void jar_xm_handle_note_and_instrument(jar_xm_context_t* ctx, jar_xm_channel_context_t* ch, jar_xm_pattern_slot_t* s) { |
| 1332 |
|
|
jar_xm_module_t* mod = &(ctx->module); |
| 1333 |
|
✗ |
if(s->instrument > 0) { |
| 1334 |
|
✗ |
if(HAS_TONE_PORTAMENTO(ch->current) && ch->instrument != NULL && ch->sample != NULL) { /* Tone portamento in effect */ |
| 1335 |
|
✗ |
jar_xm_trigger_note(ctx, ch, jar_xm_TRIGGER_KEEP_PERIOD | jar_xm_TRIGGER_KEEP_SAMPLE_POSITION); |
| 1336 |
|
✗ |
} else if(s->instrument > ctx->module.num_instruments) { /* Invalid instrument, Cut current note */ |
| 1337 |
|
|
jar_xm_cut_note(ch); |
| 1338 |
|
✗ |
ch->instrument = NULL; |
| 1339 |
|
✗ |
ch->sample = NULL; |
| 1340 |
|
|
} else { |
| 1341 |
|
✗ |
ch->instrument = ctx->module.instruments + (s->instrument - 1); |
| 1342 |
|
✗ |
if(s->note == 0 && ch->sample != NULL) { /* Ghost instrument, trigger note */ |
| 1343 |
|
|
/* Sample position is kept, but envelopes are reset */ |
| 1344 |
|
✗ |
jar_xm_trigger_note(ctx, ch, jar_xm_TRIGGER_KEEP_SAMPLE_POSITION); |
| 1345 |
|
|
} |
| 1346 |
|
|
} |
| 1347 |
|
|
} |
| 1348 |
|
|
|
| 1349 |
|
✗ |
if(NOTE_IS_VALID(s->note)) { |
| 1350 |
|
|
// note value is s->note -1 |
| 1351 |
|
✗ |
jar_xm_instrument_t* instr = ch->instrument; |
| 1352 |
|
✗ |
if(HAS_TONE_PORTAMENTO(ch->current) && instr != NULL && ch->sample != NULL) { |
| 1353 |
|
|
/* Tone portamento in effect */ |
| 1354 |
|
✗ |
ch->note = s->note + ch->sample->relative_note + ch->sample->finetune / 128.f - 1.f; |
| 1355 |
|
✗ |
ch->tone_portamento_target_period = jar_xm_period(ctx, ch->note); |
| 1356 |
|
✗ |
} else if(instr == NULL || ch->instrument->num_samples == 0) { /* Issue on instrument */ |
| 1357 |
|
|
jar_xm_cut_note(ch); |
| 1358 |
|
|
} else { |
| 1359 |
|
✗ |
if(instr->sample_of_notes[s->note - 1] < instr->num_samples) { |
| 1360 |
|
✗ |
if (mod->ramping) { |
| 1361 |
|
✗ |
for(int i = 0; i < jar_xm_SAMPLE_RAMPING_POINTS; ++i) { |
| 1362 |
|
✗ |
jar_xm_next_of_sample(ctx, ch, i); |
| 1363 |
|
|
} |
| 1364 |
|
✗ |
ch->frame_count = 0; |
| 1365 |
|
|
}; |
| 1366 |
|
✗ |
ch->sample = instr->samples + instr->sample_of_notes[s->note - 1]; |
| 1367 |
|
✗ |
ch->orig_note = ch->note = s->note + ch->sample->relative_note + ch->sample->finetune / 128.f - 1.f; |
| 1368 |
|
✗ |
if(s->instrument > 0) { |
| 1369 |
|
✗ |
jar_xm_trigger_note(ctx, ch, 0); |
| 1370 |
|
|
} else { /* Ghost note: keep old volume */ |
| 1371 |
|
✗ |
jar_xm_trigger_note(ctx, ch, jar_xm_TRIGGER_KEEP_VOLUME); |
| 1372 |
|
|
} |
| 1373 |
|
|
} else { |
| 1374 |
|
|
jar_xm_cut_note(ch); |
| 1375 |
|
|
} |
| 1376 |
|
|
} |
| 1377 |
|
✗ |
} else if(s->note == NOTE_OFF) { |
| 1378 |
|
|
jar_xm_key_off(ch); |
| 1379 |
|
|
} |
| 1380 |
|
|
|
| 1381 |
|
|
// Interpret Effect column |
| 1382 |
|
✗ |
switch(s->effect_type) { |
| 1383 |
|
✗ |
case 1: /* 1xx: Portamento up */ |
| 1384 |
|
✗ |
if(s->effect_param > 0) { ch->portamento_up_param = s->effect_param; } |
| 1385 |
|
|
break; |
| 1386 |
|
✗ |
case 2: /* 2xx: Portamento down */ |
| 1387 |
|
✗ |
if(s->effect_param > 0) { ch->portamento_down_param = s->effect_param; } |
| 1388 |
|
|
break; |
| 1389 |
|
✗ |
case 3: /* 3xx: Tone portamento */ |
| 1390 |
|
✗ |
if(s->effect_param > 0) { ch->tone_portamento_param = s->effect_param; } |
| 1391 |
|
|
break; |
| 1392 |
|
✗ |
case 4: /* 4xy: Vibrato */ |
| 1393 |
|
✗ |
if(s->effect_param & 0x0F) { ch->vibrato_param = (ch->vibrato_param & 0xF0) | (s->effect_param & 0x0F); } /* Set vibrato depth */ |
| 1394 |
|
✗ |
if(s->effect_param >> 4) { ch->vibrato_param = (s->effect_param & 0xF0) | (ch->vibrato_param & 0x0F); } /* Set vibrato speed */ |
| 1395 |
|
|
break; |
| 1396 |
|
✗ |
case 5: /* 5xy: Tone portamento + Volume slide */ |
| 1397 |
|
✗ |
if(s->effect_param > 0) { ch->volume_slide_param = s->effect_param; } |
| 1398 |
|
|
break; |
| 1399 |
|
✗ |
case 6: /* 6xy: Vibrato + Volume slide */ |
| 1400 |
|
✗ |
if(s->effect_param > 0) { ch->volume_slide_param = s->effect_param; } |
| 1401 |
|
|
break; |
| 1402 |
|
✗ |
case 7: /* 7xy: Tremolo */ |
| 1403 |
|
✗ |
if(s->effect_param & 0x0F) { ch->tremolo_param = (ch->tremolo_param & 0xF0) | (s->effect_param & 0x0F); } /* Set tremolo depth */ |
| 1404 |
|
✗ |
if(s->effect_param >> 4) { ch->tremolo_param = (s->effect_param & 0xF0) | (ch->tremolo_param & 0x0F); } /* Set tremolo speed */ |
| 1405 |
|
|
break; |
| 1406 |
|
✗ |
case 8: /* 8xx: Set panning */ |
| 1407 |
|
✗ |
ch->panning = (float)s->effect_param / 255.f; |
| 1408 |
|
✗ |
break; |
| 1409 |
|
✗ |
case 9: /* 9xx: Sample offset */ |
| 1410 |
|
✗ |
if(ch->sample != 0) { //&& NOTE_IS_VALID(s->note)) { |
| 1411 |
|
✗ |
uint32_t final_offset = s->effect_param << (ch->sample->bits == 16 ? 7 : 8); |
| 1412 |
|
✗ |
switch (ch->sample->loop_type) { |
| 1413 |
|
✗ |
case jar_xm_NO_LOOP: |
| 1414 |
|
✗ |
if(final_offset >= ch->sample->length) { /* Pretend the sample dosen't loop and is done playing */ |
| 1415 |
|
✗ |
ch->sample_position = -1; |
| 1416 |
|
|
} else { |
| 1417 |
|
✗ |
ch->sample_position = final_offset; |
| 1418 |
|
|
} |
| 1419 |
|
|
break; |
| 1420 |
|
✗ |
case jar_xm_FORWARD_LOOP: |
| 1421 |
|
✗ |
if (final_offset >= ch->sample->loop_end) { |
| 1422 |
|
✗ |
ch->sample_position -= ch->sample->loop_length; |
| 1423 |
|
✗ |
} else if(final_offset >= ch->sample->length) { |
| 1424 |
|
✗ |
ch->sample_position = ch->sample->loop_start; |
| 1425 |
|
|
} else { |
| 1426 |
|
✗ |
ch->sample_position = final_offset; |
| 1427 |
|
|
} |
| 1428 |
|
|
break; |
| 1429 |
|
✗ |
case jar_xm_PING_PONG_LOOP: |
| 1430 |
|
✗ |
if(final_offset >= ch->sample->loop_end) { |
| 1431 |
|
✗ |
ch->ping = false; |
| 1432 |
|
✗ |
ch->sample_position = (ch->sample->loop_end << 1) - ch->sample_position; |
| 1433 |
|
✗ |
} else if(final_offset >= ch->sample->length) { |
| 1434 |
|
✗ |
ch->ping = false; |
| 1435 |
|
✗ |
ch->sample_position -= ch->sample->length - 1; |
| 1436 |
|
|
} else { |
| 1437 |
|
✗ |
ch->sample_position = final_offset; |
| 1438 |
|
|
}; |
| 1439 |
|
|
break; |
| 1440 |
|
|
} |
| 1441 |
|
|
} |
| 1442 |
|
|
break; |
| 1443 |
|
✗ |
case 0xA: /* Axy: Volume slide */ |
| 1444 |
|
✗ |
if(s->effect_param > 0) { ch->volume_slide_param = s->effect_param; } |
| 1445 |
|
|
break; |
| 1446 |
|
✗ |
case 0xB: /* Bxx: Position jump */ |
| 1447 |
|
✗ |
if(s->effect_param < ctx->module.length) { |
| 1448 |
|
✗ |
ctx->position_jump = true; |
| 1449 |
|
✗ |
ctx->jump_dest = s->effect_param; |
| 1450 |
|
|
} |
| 1451 |
|
|
break; |
| 1452 |
|
✗ |
case 0xC: /* Cxx: Set volume */ |
| 1453 |
|
✗ |
ch->volume = (float)((s->effect_param > 0x40) ? 0x40 : s->effect_param) / (float)0x40; |
| 1454 |
|
✗ |
break; |
| 1455 |
|
✗ |
case 0xD: /* Dxx: Pattern break */ |
| 1456 |
|
|
/* Jump after playing this line */ |
| 1457 |
|
✗ |
ctx->pattern_break = true; |
| 1458 |
|
✗ |
ctx->jump_row = (s->effect_param >> 4) * 10 + (s->effect_param & 0x0F); |
| 1459 |
|
✗ |
break; |
| 1460 |
|
✗ |
case 0xE: /* EXy: Extended command */ |
| 1461 |
|
✗ |
switch(s->effect_param >> 4) { |
| 1462 |
|
✗ |
case 1: /* E1y: Fine portamento up */ |
| 1463 |
|
✗ |
if(s->effect_param & 0x0F) { ch->fine_portamento_up_param = s->effect_param & 0x0F; } |
| 1464 |
|
✗ |
jar_xm_pitch_slide(ctx, ch, -ch->fine_portamento_up_param); |
| 1465 |
|
|
break; |
| 1466 |
|
✗ |
case 2: /* E2y: Fine portamento down */ |
| 1467 |
|
✗ |
if(s->effect_param & 0x0F) { ch->fine_portamento_down_param = s->effect_param & 0x0F; } |
| 1468 |
|
✗ |
jar_xm_pitch_slide(ctx, ch, ch->fine_portamento_down_param); |
| 1469 |
|
|
break; |
| 1470 |
|
✗ |
case 4: /* E4y: Set vibrato control */ |
| 1471 |
|
✗ |
ch->vibrato_waveform = s->effect_param & 3; |
| 1472 |
|
✗ |
ch->vibrato_waveform_retrigger = !((s->effect_param >> 2) & 1); |
| 1473 |
|
✗ |
break; |
| 1474 |
|
✗ |
case 5: /* E5y: Set finetune */ |
| 1475 |
|
✗ |
if(NOTE_IS_VALID(ch->current->note) && ch->sample != NULL) { |
| 1476 |
|
✗ |
ch->note = ch->current->note + ch->sample->relative_note + (float)(((s->effect_param & 0x0F) - 8) << 4) / 128.f - 1.f; |
| 1477 |
|
✗ |
ch->period = jar_xm_period(ctx, ch->note); |
| 1478 |
|
✗ |
jar_xm_update_frequency(ctx, ch); |
| 1479 |
|
|
} |
| 1480 |
|
|
break; |
| 1481 |
|
✗ |
case 6: /* E6y: Pattern loop */ |
| 1482 |
|
✗ |
if(s->effect_param & 0x0F) { |
| 1483 |
|
✗ |
if((s->effect_param & 0x0F) == ch->pattern_loop_count) { /* Loop is over */ |
| 1484 |
|
✗ |
ch->pattern_loop_count = 0; |
| 1485 |
|
✗ |
ctx->position_jump = false; |
| 1486 |
|
|
} else { /* Jump to the beginning of the loop */ |
| 1487 |
|
✗ |
ch->pattern_loop_count++; |
| 1488 |
|
✗ |
ctx->position_jump = true; |
| 1489 |
|
✗ |
ctx->jump_row = ch->pattern_loop_origin; |
| 1490 |
|
✗ |
ctx->jump_dest = ctx->current_table_index; |
| 1491 |
|
|
} |
| 1492 |
|
|
} else { |
| 1493 |
|
✗ |
ch->pattern_loop_origin = ctx->current_row; /* Set loop start point */ |
| 1494 |
|
✗ |
ctx->jump_row = ch->pattern_loop_origin; /* Replicate FT2 E60 bug */ |
| 1495 |
|
|
} |
| 1496 |
|
|
break; |
| 1497 |
|
✗ |
case 7: /* E7y: Set tremolo control */ |
| 1498 |
|
✗ |
ch->tremolo_waveform = s->effect_param & 3; |
| 1499 |
|
✗ |
ch->tremolo_waveform_retrigger = !((s->effect_param >> 2) & 1); |
| 1500 |
|
✗ |
break; |
| 1501 |
|
✗ |
case 0xA: /* EAy: Fine volume slide up */ |
| 1502 |
|
✗ |
if(s->effect_param & 0x0F) { ch->fine_volume_slide_param = s->effect_param & 0x0F; } |
| 1503 |
|
✗ |
jar_xm_volume_slide(ch, ch->fine_volume_slide_param << 4); |
| 1504 |
|
|
break; |
| 1505 |
|
✗ |
case 0xB: /* EBy: Fine volume slide down */ |
| 1506 |
|
✗ |
if(s->effect_param & 0x0F) { ch->fine_volume_slide_param = s->effect_param & 0x0F; } |
| 1507 |
|
✗ |
jar_xm_volume_slide(ch, ch->fine_volume_slide_param); |
| 1508 |
|
|
break; |
| 1509 |
|
✗ |
case 0xD: /* EDy: Note delay */ |
| 1510 |
|
|
/* XXX: figure this out better. EDx triggers the note even when there no note and no instrument. But ED0 acts like like a ghost note, EDx (x ≠0) does not. */ |
| 1511 |
|
✗ |
if(s->note == 0 && s->instrument == 0) { |
| 1512 |
|
|
unsigned int flags = jar_xm_TRIGGER_KEEP_VOLUME; |
| 1513 |
|
✗ |
if(ch->current->effect_param & 0x0F) { |
| 1514 |
|
✗ |
ch->note = ch->orig_note; |
| 1515 |
|
✗ |
jar_xm_trigger_note(ctx, ch, flags); |
| 1516 |
|
|
} else { |
| 1517 |
|
✗ |
jar_xm_trigger_note(ctx, ch, flags | jar_xm_TRIGGER_KEEP_PERIOD | jar_xm_TRIGGER_KEEP_SAMPLE_POSITION ); |
| 1518 |
|
|
} |
| 1519 |
|
|
} |
| 1520 |
|
|
break; |
| 1521 |
|
|
|
| 1522 |
|
✗ |
case 0xE: /* EEy: Pattern delay */ |
| 1523 |
|
✗ |
ctx->extra_ticks = (ch->current->effect_param & 0x0F) * ctx->tempo; |
| 1524 |
|
✗ |
break; |
| 1525 |
|
|
default: |
| 1526 |
|
|
break; |
| 1527 |
|
|
} |
| 1528 |
|
|
break; |
| 1529 |
|
|
|
| 1530 |
|
✗ |
case 0xF: /* Fxx: Set tempo/BPM */ |
| 1531 |
|
✗ |
if(s->effect_param > 0) { |
| 1532 |
|
✗ |
if(s->effect_param <= 0x1F) { // First 32 possible values adjust the ticks (goes into tempo) |
| 1533 |
|
✗ |
ctx->tempo = s->effect_param; |
| 1534 |
|
|
} else { //32 and greater values adjust the BPM |
| 1535 |
|
✗ |
ctx->bpm = s->effect_param; |
| 1536 |
|
|
} |
| 1537 |
|
|
} |
| 1538 |
|
|
break; |
| 1539 |
|
|
|
| 1540 |
|
✗ |
case 16: /* Gxx: Set global volume */ |
| 1541 |
|
✗ |
ctx->global_volume = (float)((s->effect_param > 0x40) ? 0x40 : s->effect_param) / (float)0x40; |
| 1542 |
|
✗ |
break; |
| 1543 |
|
✗ |
case 17: /* Hxy: Global volume slide */ |
| 1544 |
|
✗ |
if(s->effect_param > 0) { ch->global_volume_slide_param = s->effect_param; } |
| 1545 |
|
|
break; |
| 1546 |
|
✗ |
case 21: /* Lxx: Set envelope position */ |
| 1547 |
|
✗ |
ch->volume_envelope_frame_count = s->effect_param; |
| 1548 |
|
✗ |
ch->panning_envelope_frame_count = s->effect_param; |
| 1549 |
|
✗ |
break; |
| 1550 |
|
✗ |
case 25: /* Pxy: Panning slide */ |
| 1551 |
|
✗ |
if(s->effect_param > 0) { ch->panning_slide_param = s->effect_param; } |
| 1552 |
|
|
break; |
| 1553 |
|
✗ |
case 27: /* Rxy: Multi retrig note */ |
| 1554 |
|
✗ |
if(s->effect_param > 0) { |
| 1555 |
|
✗ |
if((s->effect_param >> 4) == 0) { /* Keep previous x value */ |
| 1556 |
|
✗ |
ch->multi_retrig_param = (ch->multi_retrig_param & 0xF0) | (s->effect_param & 0x0F); |
| 1557 |
|
|
} else { |
| 1558 |
|
✗ |
ch->multi_retrig_param = s->effect_param; |
| 1559 |
|
|
} |
| 1560 |
|
|
} |
| 1561 |
|
|
break; |
| 1562 |
|
✗ |
case 29: /* Txy: Tremor */ |
| 1563 |
|
✗ |
if(s->effect_param > 0) { ch->tremor_param = s->effect_param; } /* Tremor x and y params are not separately kept in memory, unlike Rxy */ |
| 1564 |
|
|
break; |
| 1565 |
|
✗ |
case 33: /* Xxy: Extra stuff */ |
| 1566 |
|
✗ |
switch(s->effect_param >> 4) { |
| 1567 |
|
✗ |
case 1: /* X1y: Extra fine portamento up */ |
| 1568 |
|
✗ |
if(s->effect_param & 0x0F) { ch->extra_fine_portamento_up_param = s->effect_param & 0x0F; } |
| 1569 |
|
✗ |
jar_xm_pitch_slide(ctx, ch, -1.0f * ch->extra_fine_portamento_up_param); |
| 1570 |
|
|
break; |
| 1571 |
|
✗ |
case 2: /* X2y: Extra fine portamento down */ |
| 1572 |
|
✗ |
if(s->effect_param & 0x0F) { ch->extra_fine_portamento_down_param = s->effect_param & 0x0F; } |
| 1573 |
|
✗ |
jar_xm_pitch_slide(ctx, ch, ch->extra_fine_portamento_down_param); |
| 1574 |
|
|
break; |
| 1575 |
|
|
default: |
| 1576 |
|
|
break; |
| 1577 |
|
|
} |
| 1578 |
|
|
break; |
| 1579 |
|
|
default: |
| 1580 |
|
|
break; |
| 1581 |
|
|
} |
| 1582 |
|
|
} |
| 1583 |
|
|
|
| 1584 |
|
✗ |
static void jar_xm_trigger_note(jar_xm_context_t* ctx, jar_xm_channel_context_t* ch, unsigned int flags) { |
| 1585 |
|
✗ |
if (!(flags & jar_xm_TRIGGER_KEEP_SAMPLE_POSITION)) { |
| 1586 |
|
✗ |
ch->sample_position = 0.f; |
| 1587 |
|
✗ |
ch->ping = true; |
| 1588 |
|
|
}; |
| 1589 |
|
|
|
| 1590 |
|
✗ |
if (!(flags & jar_xm_TRIGGER_KEEP_VOLUME)) { |
| 1591 |
|
✗ |
if(ch->sample != NULL) { |
| 1592 |
|
✗ |
ch->volume = ch->sample->volume; |
| 1593 |
|
|
}; |
| 1594 |
|
|
}; |
| 1595 |
|
✗ |
ch->panning = ch->sample->panning; |
| 1596 |
|
✗ |
ch->sustained = true; |
| 1597 |
|
✗ |
ch->fadeout_volume = ch->volume_envelope_volume = 1.0f; |
| 1598 |
|
✗ |
ch->panning_envelope_panning = .5f; |
| 1599 |
|
✗ |
ch->volume_envelope_frame_count = ch->panning_envelope_frame_count = 0; |
| 1600 |
|
✗ |
ch->vibrato_note_offset = 0.f; |
| 1601 |
|
✗ |
ch->tremolo_volume = 0.f; |
| 1602 |
|
✗ |
ch->tremor_on = false; |
| 1603 |
|
✗ |
ch->autovibrato_ticks = 0; |
| 1604 |
|
|
|
| 1605 |
|
✗ |
if(ch->vibrato_waveform_retrigger) { ch->vibrato_ticks = 0; } /* XXX: should the waveform itself also be reset to sine? */ |
| 1606 |
|
✗ |
if(ch->tremolo_waveform_retrigger) { ch->tremolo_ticks = 0; } |
| 1607 |
|
✗ |
if(!(flags & jar_xm_TRIGGER_KEEP_PERIOD)) { |
| 1608 |
|
✗ |
ch->period = jar_xm_period(ctx, ch->note); |
| 1609 |
|
✗ |
jar_xm_update_frequency(ctx, ch); |
| 1610 |
|
|
} |
| 1611 |
|
✗ |
ch->latest_trigger = ctx->generated_samples; |
| 1612 |
|
✗ |
if(ch->instrument != NULL) { ch->instrument->latest_trigger = ctx->generated_samples; } |
| 1613 |
|
✗ |
if(ch->sample != NULL) { ch->sample->latest_trigger = ctx->generated_samples; } |
| 1614 |
|
|
} |
| 1615 |
|
|
|
| 1616 |
|
|
static void jar_xm_cut_note(jar_xm_channel_context_t* ch) { |
| 1617 |
|
✗ |
ch->volume = .0f; /* NB: this is not the same as Key Off */ |
| 1618 |
|
|
// ch->curr_left = .0f; |
| 1619 |
|
|
// ch->curr_right = .0f; |
| 1620 |
|
|
} |
| 1621 |
|
|
|
| 1622 |
|
|
static void jar_xm_key_off(jar_xm_channel_context_t* ch) { |
| 1623 |
|
✗ |
ch->sustained = false; /* Key Off */ |
| 1624 |
|
✗ |
if(ch->instrument == NULL || !ch->instrument->volume_envelope.enabled) { jar_xm_cut_note(ch); } /* If no volume envelope is used, also cut the note */ |
| 1625 |
|
|
} |
| 1626 |
|
|
|
| 1627 |
|
✗ |
static void jar_xm_row(jar_xm_context_t* ctx) { |
| 1628 |
|
✗ |
if(ctx->position_jump) { |
| 1629 |
|
✗ |
ctx->current_table_index = ctx->jump_dest; |
| 1630 |
|
✗ |
ctx->current_row = ctx->jump_row; |
| 1631 |
|
✗ |
ctx->position_jump = false; |
| 1632 |
|
✗ |
ctx->pattern_break = false; |
| 1633 |
|
✗ |
ctx->jump_row = 0; |
| 1634 |
|
|
jar_xm_post_pattern_change(ctx); |
| 1635 |
|
✗ |
} else if(ctx->pattern_break) { |
| 1636 |
|
✗ |
ctx->current_table_index++; |
| 1637 |
|
✗ |
ctx->current_row = ctx->jump_row; |
| 1638 |
|
✗ |
ctx->pattern_break = false; |
| 1639 |
|
✗ |
ctx->jump_row = 0; |
| 1640 |
|
|
jar_xm_post_pattern_change(ctx); |
| 1641 |
|
|
} |
| 1642 |
|
✗ |
jar_xm_pattern_t* cur = ctx->module.patterns + ctx->module.pattern_table[ctx->current_table_index]; |
| 1643 |
|
|
bool in_a_loop = false; |
| 1644 |
|
|
|
| 1645 |
|
|
/* Read notes information for all channels into temporary pattern slot */ |
| 1646 |
|
✗ |
for(uint8_t i = 0; i < ctx->module.num_channels; ++i) { |
| 1647 |
|
✗ |
jar_xm_pattern_slot_t* s = cur->slots + ctx->current_row * ctx->module.num_channels + i; |
| 1648 |
|
✗ |
jar_xm_channel_context_t* ch = ctx->channels + i; |
| 1649 |
|
✗ |
ch->current = s; |
| 1650 |
|
|
// If there is no note delay effect (0xED) then... |
| 1651 |
|
✗ |
if(s->effect_type != 0xE || s->effect_param >> 4 != 0xD) { |
| 1652 |
|
|
//********** Process the channel slot information ********** |
| 1653 |
|
✗ |
jar_xm_handle_note_and_instrument(ctx, ch, s); |
| 1654 |
|
|
} else { |
| 1655 |
|
|
// read the note delay information |
| 1656 |
|
✗ |
ch->note_delay_param = s->effect_param & 0x0F; |
| 1657 |
|
|
} |
| 1658 |
|
✗ |
if(!in_a_loop && ch->pattern_loop_count > 0) { |
| 1659 |
|
|
// clarify if in a loop or not |
| 1660 |
|
|
in_a_loop = true; |
| 1661 |
|
|
} |
| 1662 |
|
|
} |
| 1663 |
|
|
|
| 1664 |
|
✗ |
if(!in_a_loop) { |
| 1665 |
|
|
/* No E6y loop is in effect (or we are in the first pass) */ |
| 1666 |
|
✗ |
ctx->loop_count = (ctx->row_loop_count[MAX_NUM_ROWS * ctx->current_table_index + ctx->current_row]++); |
| 1667 |
|
|
} |
| 1668 |
|
|
|
| 1669 |
|
|
/// Move to next row |
| 1670 |
|
✗ |
ctx->current_row++; /* uint8 warning: can increment from 255 to 0, in which case it is still necessary to go the next pattern. */ |
| 1671 |
|
✗ |
if (!ctx->position_jump && !ctx->pattern_break && (ctx->current_row >= cur->num_rows || ctx->current_row == 0)) { |
| 1672 |
|
✗ |
ctx->current_table_index++; |
| 1673 |
|
✗ |
ctx->current_row = ctx->jump_row; /* This will be 0 most of the time, except when E60 is used */ |
| 1674 |
|
✗ |
ctx->jump_row = 0; |
| 1675 |
|
|
jar_xm_post_pattern_change(ctx); |
| 1676 |
|
|
} |
| 1677 |
|
|
} |
| 1678 |
|
|
|
| 1679 |
|
✗ |
static void jar_xm_envelope_tick(jar_xm_channel_context_t *ch, jar_xm_envelope_t *env, uint16_t *counter, float *outval) { |
| 1680 |
|
✗ |
if(env->num_points < 2) { |
| 1681 |
|
✗ |
if(env->num_points == 1) { |
| 1682 |
|
✗ |
*outval = (float)env->points[0].value / (float)0x40; |
| 1683 |
|
✗ |
if(*outval > 1) { *outval = 1; }; |
| 1684 |
|
|
} else {; |
| 1685 |
|
|
return; |
| 1686 |
|
|
}; |
| 1687 |
|
|
} else { |
| 1688 |
|
✗ |
if(env->loop_enabled) { |
| 1689 |
|
✗ |
uint16_t loop_start = env->points[env->loop_start_point].frame; |
| 1690 |
|
✗ |
uint16_t loop_end = env->points[env->loop_end_point].frame; |
| 1691 |
|
|
uint16_t loop_length = loop_end - loop_start; |
| 1692 |
|
✗ |
if(*counter >= loop_end) { *counter -= loop_length; }; |
| 1693 |
|
|
}; |
| 1694 |
|
✗ |
for(uint8_t j = 0; j < (env->num_points - 1); ++j) { |
| 1695 |
|
✗ |
if(env->points[j].frame <= *counter && env->points[j+1].frame >= *counter) { |
| 1696 |
|
✗ |
*outval = jar_xm_envelope_lerp(env->points + j, env->points + j + 1, *counter) / (float)0x40; |
| 1697 |
|
✗ |
break; |
| 1698 |
|
|
}; |
| 1699 |
|
|
}; |
| 1700 |
|
|
/* Make sure it is safe to increment frame count */ |
| 1701 |
|
✗ |
if(!ch->sustained || !env->sustain_enabled || *counter != env->points[env->sustain_point].frame) { (*counter)++; }; |
| 1702 |
|
|
}; |
| 1703 |
|
|
}; |
| 1704 |
|
|
|
| 1705 |
|
✗ |
static void jar_xm_envelopes(jar_xm_channel_context_t *ch) { |
| 1706 |
|
✗ |
if(ch->instrument != NULL) { |
| 1707 |
|
✗ |
if(ch->instrument->volume_envelope.enabled) { |
| 1708 |
|
✗ |
if(!ch->sustained) { |
| 1709 |
|
✗ |
ch->fadeout_volume -= (float)ch->instrument->volume_fadeout / 65536.f; |
| 1710 |
|
✗ |
jar_xm_CLAMP_DOWN(ch->fadeout_volume); |
| 1711 |
|
|
}; |
| 1712 |
|
✗ |
jar_xm_envelope_tick(ch, &(ch->instrument->volume_envelope), &(ch->volume_envelope_frame_count), &(ch->volume_envelope_volume)); |
| 1713 |
|
|
}; |
| 1714 |
|
✗ |
if(ch->instrument->panning_envelope.enabled) { |
| 1715 |
|
✗ |
jar_xm_envelope_tick(ch, &(ch->instrument->panning_envelope), &(ch->panning_envelope_frame_count), &(ch->panning_envelope_panning)); |
| 1716 |
|
|
}; |
| 1717 |
|
|
}; |
| 1718 |
|
✗ |
}; |
| 1719 |
|
|
|
| 1720 |
|
✗ |
static void jar_xm_tick(jar_xm_context_t* ctx) { |
| 1721 |
|
✗ |
if(ctx->current_tick == 0) { |
| 1722 |
|
✗ |
jar_xm_row(ctx); // We have processed all ticks and we run the row |
| 1723 |
|
|
} |
| 1724 |
|
|
|
| 1725 |
|
|
jar_xm_module_t* mod = &(ctx->module); |
| 1726 |
|
✗ |
for(uint8_t i = 0; i < ctx->module.num_channels; ++i) { |
| 1727 |
|
✗ |
jar_xm_channel_context_t* ch = ctx->channels + i; |
| 1728 |
|
✗ |
jar_xm_envelopes(ch); |
| 1729 |
|
✗ |
jar_xm_autovibrato(ctx, ch); |
| 1730 |
|
✗ |
if(ch->arp_in_progress && !HAS_ARPEGGIO(ch->current)) { |
| 1731 |
|
✗ |
ch->arp_in_progress = false; |
| 1732 |
|
✗ |
ch->arp_note_offset = 0; |
| 1733 |
|
✗ |
jar_xm_update_frequency(ctx, ch); |
| 1734 |
|
|
} |
| 1735 |
|
✗ |
if(ch->vibrato_in_progress && !HAS_VIBRATO(ch->current)) { |
| 1736 |
|
✗ |
ch->vibrato_in_progress = false; |
| 1737 |
|
✗ |
ch->vibrato_note_offset = 0.f; |
| 1738 |
|
✗ |
jar_xm_update_frequency(ctx, ch); |
| 1739 |
|
|
} |
| 1740 |
|
|
|
| 1741 |
|
|
// Effects in volumne column mostly handled on a per tick basis |
| 1742 |
|
✗ |
switch(ch->current->volume_column & 0xF0) { |
| 1743 |
|
✗ |
case 0x50: // Checks for volume = 64 |
| 1744 |
|
✗ |
if(ch->current->volume_column != 0x50) break; |
| 1745 |
|
|
case 0x10: // Set volume 0-15 |
| 1746 |
|
|
case 0x20: // Set volume 16-32 |
| 1747 |
|
|
case 0x30: // Set volume 32-48 |
| 1748 |
|
|
case 0x40: // Set volume 48-64 |
| 1749 |
|
✗ |
ch->volume = (float)(ch->current->volume_column - 16) / 64.0f; |
| 1750 |
|
✗ |
break; |
| 1751 |
|
✗ |
case 0x60: // Volume slide down |
| 1752 |
|
✗ |
jar_xm_volume_slide(ch, ch->current->volume_column & 0x0F); |
| 1753 |
|
|
break; |
| 1754 |
|
✗ |
case 0x70: // Volume slide up |
| 1755 |
|
✗ |
jar_xm_volume_slide(ch, ch->current->volume_column << 4); |
| 1756 |
|
|
break; |
| 1757 |
|
✗ |
case 0x80: // Fine volume slide down |
| 1758 |
|
✗ |
jar_xm_volume_slide(ch, ch->current->volume_column & 0x0F); |
| 1759 |
|
|
break; |
| 1760 |
|
✗ |
case 0x90: // Fine volume slide up |
| 1761 |
|
✗ |
jar_xm_volume_slide(ch, ch->current->volume_column << 4); |
| 1762 |
|
|
break; |
| 1763 |
|
✗ |
case 0xA0: // Set vibrato speed |
| 1764 |
|
✗ |
ch->vibrato_param = (ch->vibrato_param & 0x0F) | ((ch->current->volume_column & 0x0F) << 4); |
| 1765 |
|
✗ |
break; |
| 1766 |
|
✗ |
case 0xB0: // Vibrato |
| 1767 |
|
✗ |
ch->vibrato_in_progress = false; |
| 1768 |
|
✗ |
jar_xm_vibrato(ctx, ch, ch->vibrato_param, ch->vibrato_ticks++); |
| 1769 |
|
✗ |
break; |
| 1770 |
|
✗ |
case 0xC0: // Set panning |
| 1771 |
|
✗ |
if(!ctx->current_tick ) { |
| 1772 |
|
✗ |
ch->panning = (float)(ch->current->volume_column & 0x0F) / 15.0f; |
| 1773 |
|
|
} |
| 1774 |
|
|
break; |
| 1775 |
|
✗ |
case 0xD0: // Panning slide left |
| 1776 |
|
✗ |
jar_xm_panning_slide(ch, ch->current->volume_column & 0x0F); |
| 1777 |
|
|
break; |
| 1778 |
|
✗ |
case 0xE0: // Panning slide right |
| 1779 |
|
✗ |
jar_xm_panning_slide(ch, ch->current->volume_column << 4); |
| 1780 |
|
|
break; |
| 1781 |
|
✗ |
case 0xF0: // Tone portamento |
| 1782 |
|
✗ |
if(!ctx->current_tick ) { |
| 1783 |
|
✗ |
if(ch->current->volume_column & 0x0F) { ch->tone_portamento_param = ((ch->current->volume_column & 0x0F) << 4) | (ch->current->volume_column & 0x0F); } |
| 1784 |
|
|
}; |
| 1785 |
|
✗ |
jar_xm_tone_portamento(ctx, ch); |
| 1786 |
|
✗ |
break; |
| 1787 |
|
|
default: |
| 1788 |
|
|
break; |
| 1789 |
|
|
} |
| 1790 |
|
|
|
| 1791 |
|
|
// Only some standard effects handled on a per tick basis |
| 1792 |
|
|
// see jar_xm_handle_note_and_instrument for all effects handling on a per row basis |
| 1793 |
|
✗ |
switch(ch->current->effect_type) { |
| 1794 |
|
✗ |
case 0: /* 0xy: Arpeggio */ |
| 1795 |
|
✗ |
if(ch->current->effect_param > 0) { |
| 1796 |
|
✗ |
char arp_offset = ctx->tempo % 3; |
| 1797 |
|
|
switch(arp_offset) { |
| 1798 |
|
✗ |
case 2: /* 0 -> x -> 0 -> y -> x -> … */ |
| 1799 |
|
✗ |
if(ctx->current_tick == 1) { |
| 1800 |
|
✗ |
ch->arp_in_progress = true; |
| 1801 |
|
✗ |
ch->arp_note_offset = ch->current->effect_param >> 4; |
| 1802 |
|
✗ |
jar_xm_update_frequency(ctx, ch); |
| 1803 |
|
✗ |
break; |
| 1804 |
|
|
} |
| 1805 |
|
|
/* No break here, this is intended */ |
| 1806 |
|
|
case 1: /* 0 -> 0 -> y -> x -> … */ |
| 1807 |
|
✗ |
if(ctx->current_tick == 0) { |
| 1808 |
|
✗ |
ch->arp_in_progress = false; |
| 1809 |
|
✗ |
ch->arp_note_offset = 0; |
| 1810 |
|
✗ |
jar_xm_update_frequency(ctx, ch); |
| 1811 |
|
✗ |
break; |
| 1812 |
|
|
} |
| 1813 |
|
|
/* No break here, this is intended */ |
| 1814 |
|
|
case 0: /* 0 -> y -> x -> … */ |
| 1815 |
|
✗ |
jar_xm_arpeggio(ctx, ch, ch->current->effect_param, ctx->current_tick - arp_offset); |
| 1816 |
|
|
default: |
| 1817 |
|
|
break; |
| 1818 |
|
|
} |
| 1819 |
|
|
} |
| 1820 |
|
|
break; |
| 1821 |
|
|
|
| 1822 |
|
✗ |
case 1: /* 1xx: Portamento up */ |
| 1823 |
|
✗ |
if(ctx->current_tick == 0) break; |
| 1824 |
|
✗ |
jar_xm_pitch_slide(ctx, ch, -ch->portamento_up_param); |
| 1825 |
|
|
break; |
| 1826 |
|
✗ |
case 2: /* 2xx: Portamento down */ |
| 1827 |
|
✗ |
if(ctx->current_tick == 0) break; |
| 1828 |
|
✗ |
jar_xm_pitch_slide(ctx, ch, ch->portamento_down_param); |
| 1829 |
|
|
break; |
| 1830 |
|
✗ |
case 3: /* 3xx: Tone portamento */ |
| 1831 |
|
✗ |
if(ctx->current_tick == 0) break; |
| 1832 |
|
✗ |
jar_xm_tone_portamento(ctx, ch); |
| 1833 |
|
✗ |
break; |
| 1834 |
|
✗ |
case 4: /* 4xy: Vibrato */ |
| 1835 |
|
✗ |
if(ctx->current_tick == 0) break; |
| 1836 |
|
✗ |
ch->vibrato_in_progress = true; |
| 1837 |
|
✗ |
jar_xm_vibrato(ctx, ch, ch->vibrato_param, ch->vibrato_ticks++); |
| 1838 |
|
✗ |
break; |
| 1839 |
|
✗ |
case 5: /* 5xy: Tone portamento + Volume slide */ |
| 1840 |
|
✗ |
if(ctx->current_tick == 0) break; |
| 1841 |
|
✗ |
jar_xm_tone_portamento(ctx, ch); |
| 1842 |
|
✗ |
jar_xm_volume_slide(ch, ch->volume_slide_param); |
| 1843 |
|
|
break; |
| 1844 |
|
✗ |
case 6: /* 6xy: Vibrato + Volume slide */ |
| 1845 |
|
✗ |
if(ctx->current_tick == 0) break; |
| 1846 |
|
✗ |
ch->vibrato_in_progress = true; |
| 1847 |
|
✗ |
jar_xm_vibrato(ctx, ch, ch->vibrato_param, ch->vibrato_ticks++); |
| 1848 |
|
✗ |
jar_xm_volume_slide(ch, ch->volume_slide_param); |
| 1849 |
|
|
break; |
| 1850 |
|
✗ |
case 7: /* 7xy: Tremolo */ |
| 1851 |
|
✗ |
if(ctx->current_tick == 0) break; |
| 1852 |
|
✗ |
jar_xm_tremolo(ctx, ch, ch->tremolo_param, ch->tremolo_ticks++); |
| 1853 |
|
✗ |
break; |
| 1854 |
|
|
case 8: /* 8xy: Set panning */ |
| 1855 |
|
|
break; |
| 1856 |
|
|
case 9: /* 9xy: Sample offset */ |
| 1857 |
|
|
break; |
| 1858 |
|
✗ |
case 0xA: /* Axy: Volume slide */ |
| 1859 |
|
✗ |
if(ctx->current_tick == 0) break; |
| 1860 |
|
✗ |
jar_xm_volume_slide(ch, ch->volume_slide_param); |
| 1861 |
|
|
break; |
| 1862 |
|
✗ |
case 0xE: /* EXy: Extended command */ |
| 1863 |
|
✗ |
switch(ch->current->effect_param >> 4) { |
| 1864 |
|
✗ |
case 0x9: /* E9y: Retrigger note */ |
| 1865 |
|
✗ |
if(ctx->current_tick != 0 && ch->current->effect_param & 0x0F) { |
| 1866 |
|
✗ |
if(!(ctx->current_tick % (ch->current->effect_param & 0x0F))) { |
| 1867 |
|
✗ |
jar_xm_trigger_note(ctx, ch, 0); |
| 1868 |
|
✗ |
jar_xm_envelopes(ch); |
| 1869 |
|
|
} |
| 1870 |
|
|
} |
| 1871 |
|
|
break; |
| 1872 |
|
✗ |
case 0xC: /* ECy: Note cut */ |
| 1873 |
|
✗ |
if((ch->current->effect_param & 0x0F) == ctx->current_tick) { |
| 1874 |
|
|
jar_xm_cut_note(ch); |
| 1875 |
|
|
} |
| 1876 |
|
|
break; |
| 1877 |
|
✗ |
case 0xD: /* EDy: Note delay */ |
| 1878 |
|
✗ |
if(ch->note_delay_param == ctx->current_tick) { |
| 1879 |
|
✗ |
jar_xm_handle_note_and_instrument(ctx, ch, ch->current); |
| 1880 |
|
✗ |
jar_xm_envelopes(ch); |
| 1881 |
|
|
} |
| 1882 |
|
|
break; |
| 1883 |
|
|
default: |
| 1884 |
|
|
break; |
| 1885 |
|
|
} |
| 1886 |
|
|
break; |
| 1887 |
|
|
case 16: /* Fxy: Set tempo/BPM */ |
| 1888 |
|
|
break; |
| 1889 |
|
✗ |
case 17: /* Hxy: Global volume slide */ |
| 1890 |
|
✗ |
if(ctx->current_tick == 0) break; |
| 1891 |
|
✗ |
if((ch->global_volume_slide_param & 0xF0) && (ch->global_volume_slide_param & 0x0F)) { break; }; /* Invalid state */ |
| 1892 |
|
✗ |
if(ch->global_volume_slide_param & 0xF0) { /* Global slide up */ |
| 1893 |
|
✗ |
float f = (float)(ch->global_volume_slide_param >> 4) / (float)0x40; |
| 1894 |
|
✗ |
ctx->global_volume += f; |
| 1895 |
|
✗ |
jar_xm_CLAMP_UP(ctx->global_volume); |
| 1896 |
|
|
} else { /* Global slide down */ |
| 1897 |
|
✗ |
float f = (float)(ch->global_volume_slide_param & 0x0F) / (float)0x40; |
| 1898 |
|
✗ |
ctx->global_volume -= f; |
| 1899 |
|
✗ |
jar_xm_CLAMP_DOWN(ctx->global_volume); |
| 1900 |
|
|
}; |
| 1901 |
|
|
break; |
| 1902 |
|
|
|
| 1903 |
|
✗ |
case 20: /* Kxx: Key off */ |
| 1904 |
|
✗ |
if(ctx->current_tick == ch->current->effect_param) { jar_xm_key_off(ch); }; |
| 1905 |
|
|
break; |
| 1906 |
|
|
case 21: /* Lxx: Set envelope position */ |
| 1907 |
|
|
break; |
| 1908 |
|
✗ |
case 25: /* Pxy: Panning slide */ |
| 1909 |
|
✗ |
if(ctx->current_tick == 0) break; |
| 1910 |
|
✗ |
jar_xm_panning_slide(ch, ch->panning_slide_param); |
| 1911 |
|
|
break; |
| 1912 |
|
✗ |
case 27: /* Rxy: Multi retrig note */ |
| 1913 |
|
✗ |
if(ctx->current_tick == 0) break; |
| 1914 |
|
✗ |
if(((ch->multi_retrig_param) & 0x0F) == 0) break; |
| 1915 |
|
✗ |
if((ctx->current_tick % (ch->multi_retrig_param & 0x0F)) == 0) { |
| 1916 |
|
✗ |
float v = ch->volume * multi_retrig_multiply[ch->multi_retrig_param >> 4] |
| 1917 |
|
✗ |
+ multi_retrig_add[ch->multi_retrig_param >> 4]; |
| 1918 |
|
✗ |
jar_xm_CLAMP(v); |
| 1919 |
|
✗ |
jar_xm_trigger_note(ctx, ch, 0); |
| 1920 |
|
✗ |
ch->volume = v; |
| 1921 |
|
|
}; |
| 1922 |
|
|
break; |
| 1923 |
|
|
|
| 1924 |
|
✗ |
case 29: /* Txy: Tremor */ |
| 1925 |
|
✗ |
if(ctx->current_tick == 0) break; |
| 1926 |
|
✗ |
ch->tremor_on = ( (ctx->current_tick - 1) % ((ch->tremor_param >> 4) + (ch->tremor_param & 0x0F) + 2) > (ch->tremor_param >> 4) ); |
| 1927 |
|
✗ |
break; |
| 1928 |
|
|
default: |
| 1929 |
|
|
break; |
| 1930 |
|
|
}; |
| 1931 |
|
|
|
| 1932 |
|
|
float panning, volume; |
| 1933 |
|
✗ |
panning = ch->panning + (ch->panning_envelope_panning - .5f) * (.5f - fabs(ch->panning - .5f)) * 2.0f; |
| 1934 |
|
✗ |
if(ch->tremor_on) { |
| 1935 |
|
|
volume = .0f; |
| 1936 |
|
|
} else { |
| 1937 |
|
✗ |
volume = ch->volume + ch->tremolo_volume; |
| 1938 |
|
✗ |
jar_xm_CLAMP(volume); |
| 1939 |
|
✗ |
volume *= ch->fadeout_volume * ch->volume_envelope_volume; |
| 1940 |
|
|
}; |
| 1941 |
|
|
|
| 1942 |
|
✗ |
if (mod->ramping) { |
| 1943 |
|
✗ |
ch->target_panning = panning; |
| 1944 |
|
✗ |
ch->target_volume = volume; |
| 1945 |
|
|
} else { |
| 1946 |
|
✗ |
ch->actual_panning = panning; |
| 1947 |
|
✗ |
ch->actual_volume = volume; |
| 1948 |
|
|
}; |
| 1949 |
|
|
}; |
| 1950 |
|
|
|
| 1951 |
|
✗ |
ctx->current_tick++; // ok so we understand that ticks increment within the row |
| 1952 |
|
✗ |
if(ctx->current_tick >= ctx->tempo + ctx->extra_ticks) { |
| 1953 |
|
|
// This means it reached the end of the row and we reset |
| 1954 |
|
✗ |
ctx->current_tick = 0; |
| 1955 |
|
✗ |
ctx->extra_ticks = 0; |
| 1956 |
|
|
}; |
| 1957 |
|
|
|
| 1958 |
|
|
// Number of ticks / second = BPM * 0.4 |
| 1959 |
|
✗ |
ctx->remaining_samples_in_tick += (float)ctx->rate / ((float)ctx->bpm * 0.4f); |
| 1960 |
|
✗ |
}; |
| 1961 |
|
|
|
| 1962 |
|
✗ |
static void jar_xm_next_of_sample(jar_xm_context_t* ctx, jar_xm_channel_context_t* ch, int previous) { |
| 1963 |
|
|
jar_xm_module_t* mod = &(ctx->module); |
| 1964 |
|
|
|
| 1965 |
|
|
// ch->curr_left = 0.f; |
| 1966 |
|
|
// ch->curr_right = 0.f; |
| 1967 |
|
✗ |
if(ch->instrument == NULL || ch->sample == NULL || ch->sample_position < 0) { |
| 1968 |
|
✗ |
ch->curr_left = 0.f; |
| 1969 |
|
✗ |
ch->curr_right = 0.f; |
| 1970 |
|
✗ |
if (mod->ramping) { |
| 1971 |
|
✗ |
if (ch->frame_count < jar_xm_SAMPLE_RAMPING_POINTS) { |
| 1972 |
|
✗ |
if (previous > -1) { |
| 1973 |
|
✗ |
ch->end_of_previous_sample_left[previous] = jar_xm_LERP(ch->end_of_previous_sample_left[ch->frame_count], ch->curr_left, (float)ch->frame_count / (float)jar_xm_SAMPLE_RAMPING_POINTS); |
| 1974 |
|
✗ |
ch->end_of_previous_sample_right[previous] = jar_xm_LERP(ch->end_of_previous_sample_right[ch->frame_count], ch->curr_right, (float)ch->frame_count / (float)jar_xm_SAMPLE_RAMPING_POINTS); |
| 1975 |
|
|
} else { |
| 1976 |
|
✗ |
ch->curr_left = jar_xm_LERP(ch->end_of_previous_sample_left[ch->frame_count], ch->curr_left, (float)ch->frame_count / (float)jar_xm_SAMPLE_RAMPING_POINTS); |
| 1977 |
|
✗ |
ch->curr_right = jar_xm_LERP(ch->end_of_previous_sample_right[ch->frame_count], ch->curr_right, (float)ch->frame_count / (float)jar_xm_SAMPLE_RAMPING_POINTS); |
| 1978 |
|
|
}; |
| 1979 |
|
|
}; |
| 1980 |
|
|
}; |
| 1981 |
|
✗ |
return; |
| 1982 |
|
|
}; |
| 1983 |
|
✗ |
if(ch->sample->length == 0) { |
| 1984 |
|
|
return; |
| 1985 |
|
|
}; |
| 1986 |
|
|
|
| 1987 |
|
|
float t = 0.f; |
| 1988 |
|
|
uint32_t b = 0; |
| 1989 |
|
✗ |
if(mod->linear_interpolation) { |
| 1990 |
|
✗ |
b = ch->sample_position + 1; |
| 1991 |
|
✗ |
t = ch->sample_position - (uint32_t)ch->sample_position; /* Cheaper than fmodf(., 1.f) */ |
| 1992 |
|
|
}; |
| 1993 |
|
|
|
| 1994 |
|
|
float u_left, u_right; |
| 1995 |
|
✗ |
u_left = ch->sample->data[(uint32_t)ch->sample_position]; |
| 1996 |
|
✗ |
if (ch->sample->stereo) { |
| 1997 |
|
✗ |
u_right = ch->sample->data[(uint32_t)ch->sample_position + ch->sample->length]; |
| 1998 |
|
|
} else { |
| 1999 |
|
|
u_right = u_left; |
| 2000 |
|
|
}; |
| 2001 |
|
|
float v_left = 0.f, v_right = 0.f; |
| 2002 |
|
✗ |
switch(ch->sample->loop_type) { |
| 2003 |
|
✗ |
case jar_xm_NO_LOOP: |
| 2004 |
|
✗ |
if(mod->linear_interpolation) { |
| 2005 |
|
✗ |
v_left = (b < ch->sample->length) ? ch->sample->data[b] : .0f; |
| 2006 |
|
✗ |
if (ch->sample->stereo) { |
| 2007 |
|
✗ |
v_right = (b < ch->sample->length) ? ch->sample->data[b + ch->sample->length] : .0f; |
| 2008 |
|
|
} else { |
| 2009 |
|
|
v_right = v_left; |
| 2010 |
|
|
}; |
| 2011 |
|
|
}; |
| 2012 |
|
✗ |
ch->sample_position += ch->step; |
| 2013 |
|
✗ |
if(ch->sample_position >= ch->sample->length) { ch->sample_position = -1; } // stop playing this sample |
| 2014 |
|
|
break; |
| 2015 |
|
✗ |
case jar_xm_FORWARD_LOOP: |
| 2016 |
|
✗ |
if(mod->linear_interpolation) { |
| 2017 |
|
✗ |
v_left = ch->sample->data[ (b == ch->sample->loop_end) ? ch->sample->loop_start : b ]; |
| 2018 |
|
✗ |
if (ch->sample->stereo) { |
| 2019 |
|
✗ |
v_right = ch->sample->data[ (b == ch->sample->loop_end) ? ch->sample->loop_start + ch->sample->length : b + ch->sample->length]; |
| 2020 |
|
|
} else { |
| 2021 |
|
|
v_right = v_left; |
| 2022 |
|
|
}; |
| 2023 |
|
|
}; |
| 2024 |
|
✗ |
ch->sample_position += ch->step; |
| 2025 |
|
✗ |
if (ch->sample_position >= ch->sample->loop_end) { |
| 2026 |
|
✗ |
ch->sample_position -= ch->sample->loop_length; |
| 2027 |
|
|
}; |
| 2028 |
|
✗ |
if(ch->sample_position >= ch->sample->length) { |
| 2029 |
|
✗ |
ch->sample_position = ch->sample->loop_start; |
| 2030 |
|
|
}; |
| 2031 |
|
|
break; |
| 2032 |
|
✗ |
case jar_xm_PING_PONG_LOOP: |
| 2033 |
|
✗ |
if(ch->ping) { |
| 2034 |
|
✗ |
if(mod->linear_interpolation) { |
| 2035 |
|
✗ |
v_left = (b >= ch->sample->loop_end) ? ch->sample->data[(uint32_t)ch->sample_position] : ch->sample->data[b]; |
| 2036 |
|
✗ |
if (ch->sample->stereo) { |
| 2037 |
|
✗ |
v_right = (b >= ch->sample->loop_end) ? ch->sample->data[(uint32_t)ch->sample_position + ch->sample->length] : ch->sample->data[b + ch->sample->length]; |
| 2038 |
|
|
} else { |
| 2039 |
|
|
v_right = v_left; |
| 2040 |
|
|
}; |
| 2041 |
|
|
}; |
| 2042 |
|
✗ |
ch->sample_position += ch->step; |
| 2043 |
|
✗ |
if(ch->sample_position >= ch->sample->loop_end) { |
| 2044 |
|
✗ |
ch->ping = false; |
| 2045 |
|
✗ |
ch->sample_position = (ch->sample->loop_end << 1) - ch->sample_position; |
| 2046 |
|
|
}; |
| 2047 |
|
✗ |
if(ch->sample_position >= ch->sample->length) { |
| 2048 |
|
✗ |
ch->ping = false; |
| 2049 |
|
✗ |
ch->sample_position -= ch->sample->length - 1; |
| 2050 |
|
|
}; |
| 2051 |
|
|
} else { |
| 2052 |
|
✗ |
if(mod->linear_interpolation) { |
| 2053 |
|
|
v_left = u_left; |
| 2054 |
|
|
v_right = u_right; |
| 2055 |
|
✗ |
u_left = (b == 1 || b - 2 <= ch->sample->loop_start) ? ch->sample->data[(uint32_t)ch->sample_position] : ch->sample->data[b - 2]; |
| 2056 |
|
✗ |
if (ch->sample->stereo) { |
| 2057 |
|
✗ |
u_right = (b == 1 || b - 2 <= ch->sample->loop_start) ? ch->sample->data[(uint32_t)ch->sample_position + ch->sample->length] : ch->sample->data[b + ch->sample->length - 2]; |
| 2058 |
|
|
} else { |
| 2059 |
|
|
u_right = u_left; |
| 2060 |
|
|
}; |
| 2061 |
|
|
}; |
| 2062 |
|
✗ |
ch->sample_position -= ch->step; |
| 2063 |
|
✗ |
if(ch->sample_position <= ch->sample->loop_start) { |
| 2064 |
|
✗ |
ch->ping = true; |
| 2065 |
|
✗ |
ch->sample_position = (ch->sample->loop_start << 1) - ch->sample_position; |
| 2066 |
|
|
}; |
| 2067 |
|
✗ |
if (ch->sample_position <= .0f) { |
| 2068 |
|
✗ |
ch->ping = true; |
| 2069 |
|
✗ |
ch->sample_position = .0f; |
| 2070 |
|
|
}; |
| 2071 |
|
|
}; |
| 2072 |
|
|
break; |
| 2073 |
|
|
|
| 2074 |
|
|
default: |
| 2075 |
|
|
v_left = .0f; |
| 2076 |
|
|
v_right = .0f; |
| 2077 |
|
|
break; |
| 2078 |
|
|
}; |
| 2079 |
|
|
|
| 2080 |
|
✗ |
float endval_left = mod->linear_interpolation ? jar_xm_LERP(u_left, v_left, t) : u_left; |
| 2081 |
|
✗ |
float endval_right = mod->linear_interpolation ? jar_xm_LERP(u_right, v_right, t) : u_right; |
| 2082 |
|
|
|
| 2083 |
|
✗ |
if (mod->ramping) { |
| 2084 |
|
✗ |
if(ch->frame_count < jar_xm_SAMPLE_RAMPING_POINTS) { |
| 2085 |
|
|
/* Smoothly transition between old and new sample. */ |
| 2086 |
|
✗ |
if (previous > -1) { |
| 2087 |
|
✗ |
ch->end_of_previous_sample_left[previous] = jar_xm_LERP(ch->end_of_previous_sample_left[ch->frame_count], endval_left, (float)ch->frame_count / (float)jar_xm_SAMPLE_RAMPING_POINTS); |
| 2088 |
|
✗ |
ch->end_of_previous_sample_right[previous] = jar_xm_LERP(ch->end_of_previous_sample_right[ch->frame_count], endval_right, (float)ch->frame_count / (float)jar_xm_SAMPLE_RAMPING_POINTS); |
| 2089 |
|
|
} else { |
| 2090 |
|
✗ |
ch->curr_left = jar_xm_LERP(ch->end_of_previous_sample_left[ch->frame_count], endval_left, (float)ch->frame_count / (float)jar_xm_SAMPLE_RAMPING_POINTS); |
| 2091 |
|
✗ |
ch->curr_right = jar_xm_LERP(ch->end_of_previous_sample_right[ch->frame_count], endval_right, (float)ch->frame_count / (float)jar_xm_SAMPLE_RAMPING_POINTS); |
| 2092 |
|
|
}; |
| 2093 |
|
|
}; |
| 2094 |
|
|
}; |
| 2095 |
|
|
|
| 2096 |
|
✗ |
if (previous > -1) { |
| 2097 |
|
✗ |
ch->end_of_previous_sample_left[previous] = endval_left; |
| 2098 |
|
✗ |
ch->end_of_previous_sample_right[previous] = endval_right; |
| 2099 |
|
|
} else { |
| 2100 |
|
✗ |
ch->curr_left = endval_left; |
| 2101 |
|
✗ |
ch->curr_right = endval_right; |
| 2102 |
|
|
}; |
| 2103 |
|
|
}; |
| 2104 |
|
|
|
| 2105 |
|
|
// gather all channel audio into stereo float |
| 2106 |
|
✗ |
static void jar_xm_mixdown(jar_xm_context_t* ctx, float* left, float* right) { |
| 2107 |
|
|
jar_xm_module_t* mod = &(ctx->module); |
| 2108 |
|
|
|
| 2109 |
|
✗ |
if(ctx->remaining_samples_in_tick <= 0) { |
| 2110 |
|
✗ |
jar_xm_tick(ctx); |
| 2111 |
|
|
}; |
| 2112 |
|
✗ |
ctx->remaining_samples_in_tick--; |
| 2113 |
|
✗ |
*left = 0.f; |
| 2114 |
|
✗ |
*right = 0.f; |
| 2115 |
|
✗ |
if(ctx->max_loop_count > 0 && ctx->loop_count > ctx->max_loop_count) { return; } |
| 2116 |
|
|
|
| 2117 |
|
✗ |
for(uint8_t i = 0; i < ctx->module.num_channels; ++i) { |
| 2118 |
|
✗ |
jar_xm_channel_context_t* ch = ctx->channels + i; |
| 2119 |
|
✗ |
if(ch->instrument != NULL && ch->sample != NULL && ch->sample_position >= 0) { |
| 2120 |
|
✗ |
jar_xm_next_of_sample(ctx, ch, -1); |
| 2121 |
|
✗ |
if(!ch->muted && !ch->instrument->muted) { |
| 2122 |
|
✗ |
*left += ch->curr_left * ch->actual_volume * (1.f - ch->actual_panning); |
| 2123 |
|
✗ |
*right += ch->curr_right * ch->actual_volume * ch->actual_panning; |
| 2124 |
|
|
}; |
| 2125 |
|
|
|
| 2126 |
|
✗ |
if (mod->ramping) { |
| 2127 |
|
✗ |
ch->frame_count++; |
| 2128 |
|
✗ |
jar_xm_SLIDE_TOWARDS(ch->actual_volume, ch->target_volume, ctx->volume_ramp); |
| 2129 |
|
✗ |
jar_xm_SLIDE_TOWARDS(ch->actual_panning, ch->target_panning, ctx->panning_ramp); |
| 2130 |
|
|
}; |
| 2131 |
|
|
}; |
| 2132 |
|
|
}; |
| 2133 |
|
✗ |
if (ctx->global_volume != 1.0f) { |
| 2134 |
|
✗ |
*left *= ctx->global_volume; |
| 2135 |
|
✗ |
*right *= ctx->global_volume; |
| 2136 |
|
|
}; |
| 2137 |
|
|
|
| 2138 |
|
|
// experimental |
| 2139 |
|
|
// float counter = (float)ctx->generated_samples * 0.0001f |
| 2140 |
|
|
// *left = tan(&left + sin(counter)); |
| 2141 |
|
|
// *right = tan(&right + cos(counter)); |
| 2142 |
|
|
|
| 2143 |
|
|
// apply brick wall limiter when audio goes beyond bounderies |
| 2144 |
|
✗ |
if(*left < -1.0) {*left = -1.0;} else if(*left > 1.0) {*left = 1.0;}; |
| 2145 |
|
✗ |
if(*right < -1.0) {*right = -1.0;} else if(*right > 1.0) {*right = 1.0;}; |
| 2146 |
|
|
}; |
| 2147 |
|
|
|
| 2148 |
|
✗ |
void jar_xm_generate_samples(jar_xm_context_t* ctx, float* output, size_t numsamples) { |
| 2149 |
|
✗ |
if(ctx && output) { |
| 2150 |
|
✗ |
ctx->generated_samples += numsamples; |
| 2151 |
|
✗ |
for(size_t i = 0; i < numsamples; i++) { |
| 2152 |
|
✗ |
jar_xm_mixdown(ctx, output + (2 * i), output + (2 * i + 1)); |
| 2153 |
|
|
}; |
| 2154 |
|
|
}; |
| 2155 |
|
✗ |
}; |
| 2156 |
|
|
|
| 2157 |
|
✗ |
uint64_t jar_xm_get_remaining_samples(jar_xm_context_t* ctx) { |
| 2158 |
|
|
uint64_t total = 0; |
| 2159 |
|
✗ |
uint8_t currentLoopCount = jar_xm_get_loop_count(ctx); |
| 2160 |
|
✗ |
jar_xm_set_max_loop_count(ctx, 0); |
| 2161 |
|
✗ |
while(jar_xm_get_loop_count(ctx) == currentLoopCount) { |
| 2162 |
|
✗ |
total += ctx->remaining_samples_in_tick; |
| 2163 |
|
✗ |
ctx->remaining_samples_in_tick = 0; |
| 2164 |
|
✗ |
jar_xm_tick(ctx); |
| 2165 |
|
|
} |
| 2166 |
|
✗ |
ctx->loop_count = currentLoopCount; |
| 2167 |
|
✗ |
return total; |
| 2168 |
|
|
} |
| 2169 |
|
|
|
| 2170 |
|
|
//-------------------------------------------- |
| 2171 |
|
|
//FILE LOADER - TODO - NEEDS TO BE CLEANED UP |
| 2172 |
|
|
//-------------------------------------------- |
| 2173 |
|
|
#undef DEBUG |
| 2174 |
|
|
#define DEBUG(...) do { \ |
| 2175 |
|
|
fprintf(stderr, __VA_ARGS__); \ |
| 2176 |
|
|
fflush(stderr); \ |
| 2177 |
|
|
} while(0) |
| 2178 |
|
|
|
| 2179 |
|
|
#define DEBUG_ERR(...) do { \ |
| 2180 |
|
|
fprintf(stderr, __VA_ARGS__); \ |
| 2181 |
|
|
fflush(stderr); \ |
| 2182 |
|
|
} while(0) |
| 2183 |
|
|
|
| 2184 |
|
|
#define FATAL(...) do { \ |
| 2185 |
|
|
fprintf(stderr, __VA_ARGS__); \ |
| 2186 |
|
|
fflush(stderr); \ |
| 2187 |
|
|
exit(1); \ |
| 2188 |
|
|
} while(0) |
| 2189 |
|
|
|
| 2190 |
|
|
#define FATAL_ERR(...) do { \ |
| 2191 |
|
|
fprintf(stderr, __VA_ARGS__); \ |
| 2192 |
|
|
fflush(stderr); \ |
| 2193 |
|
|
exit(1); \ |
| 2194 |
|
|
} while(0) |
| 2195 |
|
|
|
| 2196 |
|
|
|
| 2197 |
|
✗ |
int jar_xm_create_context_from_file(jar_xm_context_t** ctx, uint32_t rate, const char* filename) { |
| 2198 |
|
|
FILE* xmf; |
| 2199 |
|
|
int size; |
| 2200 |
|
|
int ret; |
| 2201 |
|
|
|
| 2202 |
|
✗ |
xmf = fopen(filename, "rb"); |
| 2203 |
|
✗ |
if(xmf == NULL) { |
| 2204 |
|
✗ |
DEBUG_ERR("Could not open input file"); |
| 2205 |
|
✗ |
*ctx = NULL; |
| 2206 |
|
✗ |
return 3; |
| 2207 |
|
|
} |
| 2208 |
|
|
|
| 2209 |
|
✗ |
fseek(xmf, 0, SEEK_END); |
| 2210 |
|
✗ |
size = ftell(xmf); |
| 2211 |
|
✗ |
rewind(xmf); |
| 2212 |
|
✗ |
if(size == -1) { |
| 2213 |
|
✗ |
fclose(xmf); |
| 2214 |
|
✗ |
DEBUG_ERR("fseek() failed"); |
| 2215 |
|
✗ |
*ctx = NULL; |
| 2216 |
|
✗ |
return 4; |
| 2217 |
|
|
} |
| 2218 |
|
|
|
| 2219 |
|
✗ |
char* data = JARXM_MALLOC(size + 1); |
| 2220 |
|
✗ |
if(!data || fread(data, 1, size, xmf) < size) { |
| 2221 |
|
✗ |
fclose(xmf); |
| 2222 |
|
✗ |
DEBUG_ERR(data ? "fread() failed" : "JARXM_MALLOC() failed"); |
| 2223 |
|
✗ |
JARXM_FREE(data); |
| 2224 |
|
✗ |
*ctx = NULL; |
| 2225 |
|
✗ |
return 5; |
| 2226 |
|
|
} |
| 2227 |
|
|
|
| 2228 |
|
✗ |
fclose(xmf); |
| 2229 |
|
|
|
| 2230 |
|
✗ |
ret = jar_xm_create_context_safe(ctx, data, size, rate); |
| 2231 |
|
✗ |
JARXM_FREE(data); |
| 2232 |
|
|
|
| 2233 |
|
✗ |
switch(ret) { |
| 2234 |
|
|
case 0: |
| 2235 |
|
|
break; |
| 2236 |
|
✗ |
case 1: DEBUG("could not create context: module is not sane\n"); |
| 2237 |
|
✗ |
*ctx = NULL; |
| 2238 |
|
✗ |
return 1; |
| 2239 |
|
|
break; |
| 2240 |
|
✗ |
case 2: FATAL("could not create context: malloc failed\n"); |
| 2241 |
|
|
return 2; |
| 2242 |
|
|
break; |
| 2243 |
|
✗ |
default: FATAL("could not create context: unknown error\n"); |
| 2244 |
|
|
return 6; |
| 2245 |
|
|
break; |
| 2246 |
|
|
} |
| 2247 |
|
|
|
| 2248 |
|
|
return 0; |
| 2249 |
|
|
} |
| 2250 |
|
|
|
| 2251 |
|
|
// not part of the original library |
| 2252 |
|
✗ |
void jar_xm_reset(jar_xm_context_t* ctx) { |
| 2253 |
|
✗ |
for (uint16_t i = 0; i < jar_xm_get_number_of_channels(ctx); i++) { |
| 2254 |
|
✗ |
jar_xm_cut_note(&ctx->channels[i]); |
| 2255 |
|
|
} |
| 2256 |
|
✗ |
ctx->generated_samples = 0; |
| 2257 |
|
✗ |
ctx->current_row = 0; |
| 2258 |
|
✗ |
ctx->current_table_index = 0; |
| 2259 |
|
✗ |
ctx->current_tick = 0; |
| 2260 |
|
✗ |
ctx->tempo =ctx->default_tempo; // reset to file default value |
| 2261 |
|
✗ |
ctx->bpm = ctx->default_bpm; // reset to file default value |
| 2262 |
|
✗ |
ctx->global_volume = ctx->default_global_volume; // reset to file default value |
| 2263 |
|
|
} |
| 2264 |
|
|
|
| 2265 |
|
|
|
| 2266 |
|
✗ |
void jar_xm_flip_linear_interpolation(jar_xm_context_t* ctx) { |
| 2267 |
|
✗ |
if (ctx->module.linear_interpolation) { |
| 2268 |
|
✗ |
ctx->module.linear_interpolation = 0; |
| 2269 |
|
|
} else { |
| 2270 |
|
✗ |
ctx->module.linear_interpolation = 1; |
| 2271 |
|
|
} |
| 2272 |
|
|
} |
| 2273 |
|
|
|
| 2274 |
|
✗ |
void jar_xm_table_jump(jar_xm_context_t* ctx, int table_ptr) { |
| 2275 |
|
✗ |
for (uint16_t i = 0; i < jar_xm_get_number_of_channels(ctx); i++) { |
| 2276 |
|
✗ |
jar_xm_cut_note(&ctx->channels[i]); |
| 2277 |
|
|
} |
| 2278 |
|
✗ |
ctx->current_row = 0; |
| 2279 |
|
✗ |
ctx->current_tick = 0; |
| 2280 |
|
✗ |
if(table_ptr > 0 && table_ptr < ctx->module.length) { |
| 2281 |
|
✗ |
ctx->current_table_index = table_ptr; |
| 2282 |
|
✗ |
ctx->module.restart_position = table_ptr; // The reason to jump is to start a new loop or track |
| 2283 |
|
|
} else { |
| 2284 |
|
✗ |
ctx->current_table_index = 0; |
| 2285 |
|
✗ |
ctx->module.restart_position = 0; // The reason to jump is to start a new loop or track |
| 2286 |
|
✗ |
ctx->tempo =ctx->default_tempo; // reset to file default value |
| 2287 |
|
✗ |
ctx->bpm = ctx->default_bpm; // reset to file default value |
| 2288 |
|
✗ |
ctx->global_volume = ctx->default_global_volume; // reset to file default value |
| 2289 |
|
|
}; |
| 2290 |
|
|
} |
| 2291 |
|
|
|
| 2292 |
|
|
|
| 2293 |
|
|
// TRANSLATE NOTE NUMBER INTO USER VALUE (ie. 1 = C-1, 2 = C#1, 3 = D-1 ... ) |
| 2294 |
|
✗ |
const char* xm_note_chr(int number) { |
| 2295 |
|
✗ |
if (number == NOTE_OFF) { |
| 2296 |
|
|
return "=="; |
| 2297 |
|
|
}; |
| 2298 |
|
✗ |
number = number % 12; |
| 2299 |
|
✗ |
switch(number) { |
| 2300 |
|
|
case 1: return "C-"; |
| 2301 |
|
✗ |
case 2: return "C#"; |
| 2302 |
|
✗ |
case 3: return "D-"; |
| 2303 |
|
✗ |
case 4: return "D#"; |
| 2304 |
|
✗ |
case 5: return "E-"; |
| 2305 |
|
✗ |
case 6: return "F-"; |
| 2306 |
|
✗ |
case 7: return "F#"; |
| 2307 |
|
✗ |
case 8: return "G-"; |
| 2308 |
|
✗ |
case 9: return "G#"; |
| 2309 |
|
✗ |
case 10: return "A-"; |
| 2310 |
|
✗ |
case 11: return "A#"; |
| 2311 |
|
|
case 12: return "B-"; |
| 2312 |
|
|
}; |
| 2313 |
|
✗ |
return "??"; |
| 2314 |
|
|
}; |
| 2315 |
|
|
|
| 2316 |
|
✗ |
const char* xm_octave_chr(int number) { |
| 2317 |
|
✗ |
if (number == NOTE_OFF) { |
| 2318 |
|
|
return "="; |
| 2319 |
|
|
}; |
| 2320 |
|
|
|
| 2321 |
|
✗ |
int number2 = number - number % 12; |
| 2322 |
|
✗ |
int result = floor(number2 / 12) + 1; |
| 2323 |
|
✗ |
switch(result) { |
| 2324 |
|
|
case 1: return "1"; |
| 2325 |
|
✗ |
case 2: return "2"; |
| 2326 |
|
✗ |
case 3: return "3"; |
| 2327 |
|
✗ |
case 4: return "4"; |
| 2328 |
|
✗ |
case 5: return "5"; |
| 2329 |
|
✗ |
case 6: return "6"; |
| 2330 |
|
✗ |
case 7: return "7"; |
| 2331 |
|
✗ |
case 8: return "8"; |
| 2332 |
|
✗ |
default: return "?"; /* UNKNOWN */ |
| 2333 |
|
|
}; |
| 2334 |
|
|
|
| 2335 |
|
|
}; |
| 2336 |
|
|
|
| 2337 |
|
|
// TRANSLATE NOTE EFFECT CODE INTO USER VALUE |
| 2338 |
|
✗ |
const char* xm_effect_chr(int fx) { |
| 2339 |
|
✗ |
switch(fx) { |
| 2340 |
|
|
case 0: return "0"; /* ZERO = NO EFFECT */ |
| 2341 |
|
✗ |
case 1: return "1"; /* 1xx: Portamento up */ |
| 2342 |
|
✗ |
case 2: return "2"; /* 2xx: Portamento down */ |
| 2343 |
|
✗ |
case 3: return "3"; /* 3xx: Tone portamento */ |
| 2344 |
|
✗ |
case 4: return "4"; /* 4xy: Vibrato */ |
| 2345 |
|
✗ |
case 5: return "5"; /* 5xy: Tone portamento + Volume slide */ |
| 2346 |
|
✗ |
case 6: return "6"; /* 6xy: Vibrato + Volume slide */ |
| 2347 |
|
✗ |
case 7: return "7"; /* 7xy: Tremolo */ |
| 2348 |
|
✗ |
case 8: return "8"; /* 8xx: Set panning */ |
| 2349 |
|
✗ |
case 9: return "9"; /* 9xx: Sample offset */ |
| 2350 |
|
✗ |
case 0xA: return "A";/* Axy: Volume slide */ |
| 2351 |
|
✗ |
case 0xB: return "B";/* Bxx: Position jump */ |
| 2352 |
|
✗ |
case 0xC: return "C";/* Cxx: Set volume */ |
| 2353 |
|
✗ |
case 0xD: return "D";/* Dxx: Pattern break */ |
| 2354 |
|
✗ |
case 0xE: return "E";/* EXy: Extended command */ |
| 2355 |
|
✗ |
case 0xF: return "F";/* Fxx: Set tempo/BPM */ |
| 2356 |
|
✗ |
case 16: return "G"; /* Gxx: Set global volume */ |
| 2357 |
|
✗ |
case 17: return "H"; /* Hxy: Global volume slide */ |
| 2358 |
|
✗ |
case 21: return "L"; /* Lxx: Set envelope position */ |
| 2359 |
|
✗ |
case 25: return "P"; /* Pxy: Panning slide */ |
| 2360 |
|
✗ |
case 27: return "R"; /* Rxy: Multi retrig note */ |
| 2361 |
|
✗ |
case 29: return "T"; /* Txy: Tremor */ |
| 2362 |
|
✗ |
case 33: return "X"; /* Xxy: Extra stuff */ |
| 2363 |
|
✗ |
default: return "?"; /* UNKNOWN */ |
| 2364 |
|
|
}; |
| 2365 |
|
|
} |
| 2366 |
|
|
|
| 2367 |
|
|
#ifdef JAR_XM_RAYLIB |
| 2368 |
|
|
|
| 2369 |
|
|
#include "raylib.h" // Need RayLib API calls for the DEBUG display |
| 2370 |
|
|
|
| 2371 |
|
|
void jar_xm_debug(jar_xm_context_t *ctx) { |
| 2372 |
|
|
int size=40; |
| 2373 |
|
|
int x = 0, y = 0; |
| 2374 |
|
|
|
| 2375 |
|
|
// DEBUG VARIABLES |
| 2376 |
|
|
y += size; DrawText(TextFormat("CUR TBL = %i", ctx->current_table_index), x, y, size, WHITE); |
| 2377 |
|
|
y += size; DrawText(TextFormat("CUR PAT = %i", ctx->module.pattern_table[ctx->current_table_index]), x, y, size, WHITE); |
| 2378 |
|
|
y += size; DrawText(TextFormat("POS JMP = %d", ctx->position_jump), x, y, size, WHITE); |
| 2379 |
|
|
y += size; DrawText(TextFormat("JMP DST = %i", ctx->jump_dest), x, y, size, WHITE); |
| 2380 |
|
|
y += size; DrawText(TextFormat("PTN BRK = %d", ctx->pattern_break), x, y, size, WHITE); |
| 2381 |
|
|
y += size; DrawText(TextFormat("CUR ROW = %i", ctx->current_row), x, y, size, WHITE); |
| 2382 |
|
|
y += size; DrawText(TextFormat("JMP ROW = %i", ctx->jump_row), x, y, size, WHITE); |
| 2383 |
|
|
y += size; DrawText(TextFormat("ROW LCT = %i", ctx->row_loop_count), x, y, size, WHITE); |
| 2384 |
|
|
y += size; DrawText(TextFormat("LCT = %i", ctx->loop_count), x, y, size, WHITE); |
| 2385 |
|
|
y += size; DrawText(TextFormat("MAX LCT = %i", ctx->max_loop_count), x, y, size, WHITE); |
| 2386 |
|
|
x = size * 12; y = 0; |
| 2387 |
|
|
|
| 2388 |
|
|
y += size; DrawText(TextFormat("CUR TCK = %i", ctx->current_tick), x, y, size, WHITE); |
| 2389 |
|
|
y += size; DrawText(TextFormat("XTR TCK = %i", ctx->extra_ticks), x, y, size, WHITE); |
| 2390 |
|
|
y += size; DrawText(TextFormat("TCK/ROW = %i", ctx->tempo), x, y, size, ORANGE); |
| 2391 |
|
|
y += size; DrawText(TextFormat("SPL TCK = %f", ctx->remaining_samples_in_tick), x, y, size, WHITE); |
| 2392 |
|
|
y += size; DrawText(TextFormat("GEN SPL = %i", ctx->generated_samples), x, y, size, WHITE); |
| 2393 |
|
|
y += size * 7; |
| 2394 |
|
|
|
| 2395 |
|
|
x = 0; |
| 2396 |
|
|
size=16; |
| 2397 |
|
|
// TIMELINE OF MODULE |
| 2398 |
|
|
for (int i=0; i < ctx->module.length; i++) { |
| 2399 |
|
|
if (i == ctx->jump_dest) { |
| 2400 |
|
|
if (ctx->position_jump) { |
| 2401 |
|
|
DrawRectangle(i * size * 2, y - size, size * 2, size, GOLD); |
| 2402 |
|
|
} else { |
| 2403 |
|
|
DrawRectangle(i * size * 2, y - size, size * 2, size, BROWN); |
| 2404 |
|
|
}; |
| 2405 |
|
|
}; |
| 2406 |
|
|
if (i == ctx->current_table_index) { |
| 2407 |
|
|
// DrawText(TextFormat("%02X", ctx->current_tick), i * size * 2, y - size, size, WHITE); |
| 2408 |
|
|
DrawRectangle(i * size * 2, y, size * 2, size, RED); |
| 2409 |
|
|
DrawText(TextFormat("%02X", ctx->current_row), i * size * 2, y - size, size, YELLOW); |
| 2410 |
|
|
} else { |
| 2411 |
|
|
DrawRectangle(i * size * 2, y, size * 2, size, ORANGE); |
| 2412 |
|
|
}; |
| 2413 |
|
|
DrawText(TextFormat("%02X", ctx->module.pattern_table[i]), i * size * 2, y, size, WHITE); |
| 2414 |
|
|
}; |
| 2415 |
|
|
y += size; |
| 2416 |
|
|
|
| 2417 |
|
|
jar_xm_pattern_t* cur = ctx->module.patterns + ctx->module.pattern_table[ctx->current_table_index]; |
| 2418 |
|
|
|
| 2419 |
|
|
/* DISPLAY CURRENTLY PLAYING PATTERN */ |
| 2420 |
|
|
|
| 2421 |
|
|
x += 2 * size; |
| 2422 |
|
|
for(uint8_t i = 0; i < ctx->module.num_channels; i++) { |
| 2423 |
|
|
DrawRectangle(x, y, 8 * size, size, PURPLE); |
| 2424 |
|
|
DrawText("N", x, y, size, YELLOW); |
| 2425 |
|
|
DrawText("I", x + size * 2, y, size, YELLOW); |
| 2426 |
|
|
DrawText("V", x + size * 4, y, size, YELLOW); |
| 2427 |
|
|
DrawText("FX", x + size * 6, y, size, YELLOW); |
| 2428 |
|
|
x += 9 * size; |
| 2429 |
|
|
}; |
| 2430 |
|
|
x += size; |
| 2431 |
|
|
for (int j=(ctx->current_row - 14); j<(ctx->current_row + 15); j++) { |
| 2432 |
|
|
y += size; |
| 2433 |
|
|
x = 0; |
| 2434 |
|
|
if (j >=0 && j < (cur->num_rows)) { |
| 2435 |
|
|
DrawRectangle(x, y, size * 2, size, BROWN); |
| 2436 |
|
|
DrawText(TextFormat("%02X",j), x, y, size, WHITE); |
| 2437 |
|
|
x += 2 * size; |
| 2438 |
|
|
for(uint8_t i = 0; i < ctx->module.num_channels; i++) { |
| 2439 |
|
|
if (j==(ctx->current_row)) { |
| 2440 |
|
|
DrawRectangle(x, y, 8 * size, size, DARKGREEN); |
| 2441 |
|
|
} else { |
| 2442 |
|
|
DrawRectangle(x, y, 8 * size, size, DARKGRAY); |
| 2443 |
|
|
}; |
| 2444 |
|
|
jar_xm_pattern_slot_t *s = cur->slots + j * ctx->module.num_channels + i; |
| 2445 |
|
|
// jar_xm_channel_context_t *ch = ctx->channels + i; |
| 2446 |
|
|
if (s->note > 0) {DrawText(TextFormat("%s%s", xm_note_chr(s->note), xm_octave_chr(s->note) ), x, y, size, WHITE);} else {DrawText("...", x, y, size, GRAY);}; |
| 2447 |
|
|
if (s->instrument > 0) { |
| 2448 |
|
|
DrawText(TextFormat("%02X", s->instrument), x + size * 2, y, size, WHITE); |
| 2449 |
|
|
if (s->volume_column == 0) { |
| 2450 |
|
|
DrawText(TextFormat("%02X", 64), x + size * 4, y, size, YELLOW); |
| 2451 |
|
|
}; |
| 2452 |
|
|
} else { |
| 2453 |
|
|
DrawText("..", x + size * 2, y, size, GRAY); |
| 2454 |
|
|
if (s->volume_column == 0) { |
| 2455 |
|
|
DrawText("..", x + size * 4, y, size, GRAY); |
| 2456 |
|
|
}; |
| 2457 |
|
|
}; |
| 2458 |
|
|
if (s->volume_column > 0) {DrawText(TextFormat("%02X", (s->volume_column - 16)), x + size * 4, y, size, WHITE);}; |
| 2459 |
|
|
if (s->effect_type > 0 || s->effect_param > 0) {DrawText(TextFormat("%s%02X", xm_effect_chr(s->effect_type), s->effect_param), x + size * 6, y, size, WHITE);}; |
| 2460 |
|
|
x += 9 * size; |
| 2461 |
|
|
}; |
| 2462 |
|
|
}; |
| 2463 |
|
|
}; |
| 2464 |
|
|
|
| 2465 |
|
|
} |
| 2466 |
|
|
#endif // RayLib extension |
| 2467 |
|
|
|
| 2468 |
|
|
#endif//end of JAR_XM_IMPLEMENTATION |
| 2469 |
|
|
//------------------------------------------------------------------------------- |
| 2470 |
|
|
|
| 2471 |
|
|
#endif//end of INCLUDE_JAR_XM_H |
| 2472 |
|
|
|