Line |
Branch |
Exec |
Source |
1 |
|
|
// jar_xm.h |
2 |
|
|
// |
3 |
|
|
// ORIGINAL LICENSE - FOR LIBXM: |
4 |
|
|
// |
5 |
|
|
// Author: Romain "Artefact2" Dalmaso <artefact2@gmail.com> |
6 |
|
|
// Contributor: Dan Spencer <dan@atomicpotato.net> |
7 |
|
|
// Repackaged into jar_xm.h By: Joshua Adam Reisenauer <kd7tck@gmail.com> |
8 |
|
|
// This program is free software. It comes without any warranty, to the |
9 |
|
|
// extent permitted by applicable law. You can redistribute it and/or |
10 |
|
|
// modify it under the terms of the Do What The Fuck You Want To Public |
11 |
|
|
// License, Version 2, as published by Sam Hocevar. See |
12 |
|
|
// http://sam.zoy.org/wtfpl/COPYING for more details. |
13 |
|
|
// |
14 |
|
|
// HISTORY: |
15 |
|
|
// v0.1.0 2016-02-22 jar_xm.h - development by Joshua Reisenauer, MAR 2016 |
16 |
|
|
// v0.2.1 2021-03-07 m4ntr0n1c: Fix clipping noise for "bad" xm's (they will always clip), avoid clip noise and just put a ceiling) |
17 |
|
|
// v0.2.2 2021-03-09 m4ntr0n1c: Add complete debug solution (raylib.h must be included) |
18 |
|
|
// v0.2.3 2021-03-11 m4ntr0n1c: Fix tempo, bpm and volume on song stop / start / restart / loop |
19 |
|
|
// v0.2.4 2021-03-17 m4ntr0n1c: Sanitize code for readability |
20 |
|
|
// v0.2.5 2021-03-22 m4ntr0n1c: Minor adjustments |
21 |
|
|
// v0.2.6 2021-04-01 m4ntr0n1c: Minor fixes and optimisation |
22 |
|
|
// v0.3.0 2021-04-03 m4ntr0n1c: Addition of Stereo sample support, Linear Interpolation and Ramping now addressable options in code |
23 |
|
|
// v0.3.1 2021-04-04 m4ntr0n1c: Volume effects column adjustments, sample offset handling adjustments |
24 |
|
|
// |
25 |
|
|
// USAGE: |
26 |
|
|
// |
27 |
|
|
// In ONE source file, put: |
28 |
|
|
// |
29 |
|
|
// #define JAR_XM_IMPLEMENTATION |
30 |
|
|
// #include "jar_xm.h" |
31 |
|
|
// |
32 |
|
|
// Other source files should just include jar_xm.h |
33 |
|
|
// |
34 |
|
|
// SAMPLE CODE: |
35 |
|
|
// |
36 |
|
|
// jar_xm_context_t *musicptr; |
37 |
|
|
// float musicBuffer[48000 / 60]; |
38 |
|
|
// int intro_load(void) |
39 |
|
|
// { |
40 |
|
|
// jar_xm_create_context_from_file(&musicptr, 48000, "Song.XM"); |
41 |
|
|
// return 1; |
42 |
|
|
// } |
43 |
|
|
// int intro_unload(void) |
44 |
|
|
// { |
45 |
|
|
// jar_xm_free_context(musicptr); |
46 |
|
|
// return 1; |
47 |
|
|
// } |
48 |
|
|
// int intro_tick(long counter) |
49 |
|
|
// { |
50 |
|
|
// jar_xm_generate_samples(musicptr, musicBuffer, (48000 / 60) / 2); |
51 |
|
|
// if(IsKeyDown(KEY_ENTER)) |
52 |
|
|
// return 1; |
53 |
|
|
// return 0; |
54 |
|
|
// } |
55 |
|
|
// |
56 |
|
|
#ifndef INCLUDE_JAR_XM_H |
57 |
|
|
#define INCLUDE_JAR_XM_H |
58 |
|
|
|
59 |
|
|
#include <stdint.h> |
60 |
|
|
|
61 |
|
|
#define JAR_XM_DEBUG 0 |
62 |
|
|
#define JAR_XM_DEFENSIVE 1 |
63 |
|
|
//#define JAR_XM_RAYLIB 0 // set to 0 to disable the RayLib visualizer extension |
64 |
|
|
|
65 |
|
|
// Allow custom memory allocators |
66 |
|
|
#ifndef JARXM_MALLOC |
67 |
|
|
#define JARXM_MALLOC(sz) malloc(sz) |
68 |
|
|
#endif |
69 |
|
|
#ifndef JARXM_FREE |
70 |
|
|
#define JARXM_FREE(p) free(p) |
71 |
|
|
#endif |
72 |
|
|
|
73 |
|
|
//------------------------------------------------------------------------------- |
74 |
|
|
struct jar_xm_context_s; |
75 |
|
|
typedef struct jar_xm_context_s jar_xm_context_t; |
76 |
|
|
|
77 |
|
|
#ifdef __cplusplus |
78 |
|
|
extern "C" { |
79 |
|
|
#endif |
80 |
|
|
|
81 |
|
|
//** Create a XM context. |
82 |
|
|
// * @param moddata the contents of the module |
83 |
|
|
// * @param rate play rate in Hz, recommended value of 48000 |
84 |
|
|
// * @returns 0 on success |
85 |
|
|
// * @returns 1 if module data is not sane |
86 |
|
|
// * @returns 2 if memory allocation failed |
87 |
|
|
// * @returns 3 unable to open input file |
88 |
|
|
// * @returns 4 fseek() failed |
89 |
|
|
// * @returns 5 fread() failed |
90 |
|
|
// * @returns 6 unkown error |
91 |
|
|
// * @deprecated This function is unsafe! |
92 |
|
|
// * @see jar_xm_create_context_safe() |
93 |
|
|
int jar_xm_create_context_from_file(jar_xm_context_t** ctx, uint32_t rate, const char* filename); |
94 |
|
|
|
95 |
|
|
//** Create a XM context. |
96 |
|
|
// * @param moddata the contents of the module |
97 |
|
|
// * @param rate play rate in Hz, recommended value of 48000 |
98 |
|
|
// * @returns 0 on success |
99 |
|
|
// * @returns 1 if module data is not sane |
100 |
|
|
// * @returns 2 if memory allocation failed |
101 |
|
|
// * @deprecated This function is unsafe! |
102 |
|
|
// * @see jar_xm_create_context_safe() |
103 |
|
|
int jar_xm_create_context(jar_xm_context_t** ctx, const char* moddata, uint32_t rate); |
104 |
|
|
|
105 |
|
|
//** Create a XM context. |
106 |
|
|
// * @param moddata the contents of the module |
107 |
|
|
// * @param moddata_length the length of the contents of the module, in bytes |
108 |
|
|
// * @param rate play rate in Hz, recommended value of 48000 |
109 |
|
|
// * @returns 0 on success |
110 |
|
|
// * @returns 1 if module data is not sane |
111 |
|
|
// * @returns 2 if memory allocation failed |
112 |
|
|
int jar_xm_create_context_safe(jar_xm_context_t** ctx, const char* moddata, size_t moddata_length, uint32_t rate); |
113 |
|
|
|
114 |
|
|
//** Free a XM context created by jar_xm_create_context(). */ |
115 |
|
|
void jar_xm_free_context(jar_xm_context_t* ctx); |
116 |
|
|
|
117 |
|
|
//** Play the module and put the sound samples in an output buffer. |
118 |
|
|
// * @param output buffer of 2*numsamples elements (A left and right value for each sample) |
119 |
|
|
// * @param numsamples number of samples to generate |
120 |
|
|
void jar_xm_generate_samples(jar_xm_context_t* ctx, float* output, size_t numsamples); |
121 |
|
|
|
122 |
|
|
//** Play the module, resample from float to 16 bit, and put the sound samples in an output buffer. |
123 |
|
|
// * @param output buffer of 2*numsamples elements (A left and right value for each sample) |
124 |
|
|
// * @param numsamples number of samples to generate |
125 |
|
✗ |
void jar_xm_generate_samples_16bit(jar_xm_context_t* ctx, short* output, size_t numsamples) { |
126 |
|
✗ |
float* musicBuffer = JARXM_MALLOC((2*numsamples)*sizeof(float)); |
127 |
|
✗ |
jar_xm_generate_samples(ctx, musicBuffer, numsamples); |
128 |
|
|
|
129 |
|
✗ |
if(output){ |
130 |
|
✗ |
for(int x=0;x<2*numsamples;x++) output[x] = (musicBuffer[x] * 32767.0f); // scale sample to signed small int |
131 |
|
|
} |
132 |
|
✗ |
JARXM_FREE(musicBuffer); |
133 |
|
|
} |
134 |
|
|
|
135 |
|
|
//** Play the module, resample from float to 8 bit, and put the sound samples in an output buffer. |
136 |
|
|
// * @param output buffer of 2*numsamples elements (A left and right value for each sample) |
137 |
|
|
// * @param numsamples number of samples to generate |
138 |
|
✗ |
void jar_xm_generate_samples_8bit(jar_xm_context_t* ctx, char* output, size_t numsamples) { |
139 |
|
✗ |
float* musicBuffer = JARXM_MALLOC((2*numsamples)*sizeof(float)); |
140 |
|
✗ |
jar_xm_generate_samples(ctx, musicBuffer, numsamples); |
141 |
|
|
|
142 |
|
✗ |
if(output){ |
143 |
|
✗ |
for(int x=0;x<2*numsamples;x++) output[x] = (musicBuffer[x] * 127.0f); // scale sample to signed 8 bit |
144 |
|
|
} |
145 |
|
✗ |
JARXM_FREE(musicBuffer); |
146 |
|
|
} |
147 |
|
|
|
148 |
|
|
//** Set the maximum number of times a module can loop. After the specified number of loops, calls to jar_xm_generate_samples will only generate silence. You can control the current number of loops with jar_xm_get_loop_count(). |
149 |
|
|
// * @param loopcnt maximum number of loops. Use 0 to loop indefinitely. |
150 |
|
|
void jar_xm_set_max_loop_count(jar_xm_context_t* ctx, uint8_t loopcnt); |
151 |
|
|
|
152 |
|
|
//** Get the loop count of the currently playing module. This value is 0 when the module is still playing, 1 when the module has looped once, etc. |
153 |
|
|
uint8_t jar_xm_get_loop_count(jar_xm_context_t* ctx); |
154 |
|
|
|
155 |
|
|
//** Mute or unmute a channel. |
156 |
|
|
// * @note Channel numbers go from 1 to jar_xm_get_number_of_channels(...). |
157 |
|
|
// * @return whether the channel was muted. |
158 |
|
|
bool jar_xm_mute_channel(jar_xm_context_t* ctx, uint16_t, bool); |
159 |
|
|
|
160 |
|
|
//** Mute or unmute an instrument. |
161 |
|
|
// * @note Instrument numbers go from 1 to jar_xm_get_number_of_instruments(...). |
162 |
|
|
// * @return whether the instrument was muted. |
163 |
|
|
bool jar_xm_mute_instrument(jar_xm_context_t* ctx, uint16_t, bool); |
164 |
|
|
|
165 |
|
|
//** Get the module name as a NUL-terminated string. |
166 |
|
|
const char* jar_xm_get_module_name(jar_xm_context_t* ctx); |
167 |
|
|
|
168 |
|
|
//** Get the tracker name as a NUL-terminated string. |
169 |
|
|
const char* jar_xm_get_tracker_name(jar_xm_context_t* ctx); |
170 |
|
|
|
171 |
|
|
//** Get the number of channels. |
172 |
|
|
uint16_t jar_xm_get_number_of_channels(jar_xm_context_t* ctx); |
173 |
|
|
|
174 |
|
|
//** Get the module length (in patterns). |
175 |
|
|
uint16_t jar_xm_get_module_length(jar_xm_context_t*); |
176 |
|
|
|
177 |
|
|
//** Get the number of patterns. |
178 |
|
|
uint16_t jar_xm_get_number_of_patterns(jar_xm_context_t* ctx); |
179 |
|
|
|
180 |
|
|
//** Get the number of rows of a pattern. |
181 |
|
|
// * @note Pattern numbers go from 0 to jar_xm_get_number_of_patterns(...)-1. |
182 |
|
|
uint16_t jar_xm_get_number_of_rows(jar_xm_context_t* ctx, uint16_t); |
183 |
|
|
|
184 |
|
|
//** Get the number of instruments. |
185 |
|
|
uint16_t jar_xm_get_number_of_instruments(jar_xm_context_t* ctx); |
186 |
|
|
|
187 |
|
|
//** Get the number of samples of an instrument. |
188 |
|
|
// * @note Instrument numbers go from 1 to jar_xm_get_number_of_instruments(...). |
189 |
|
|
uint16_t jar_xm_get_number_of_samples(jar_xm_context_t* ctx, uint16_t); |
190 |
|
|
|
191 |
|
|
//** Get the current module speed. |
192 |
|
|
// * @param bpm will receive the current BPM |
193 |
|
|
// * @param tempo will receive the current tempo (ticks per line) |
194 |
|
|
void jar_xm_get_playing_speed(jar_xm_context_t* ctx, uint16_t* bpm, uint16_t* tempo); |
195 |
|
|
|
196 |
|
|
//** Get the current position in the module being played. |
197 |
|
|
// * @param pattern_index if not NULL, will receive the current pattern index in the POT (pattern order table) |
198 |
|
|
// * @param pattern if not NULL, will receive the current pattern number |
199 |
|
|
// * @param row if not NULL, will receive the current row |
200 |
|
|
// * @param samples if not NULL, will receive the total number of |
201 |
|
|
// * generated samples (divide by sample rate to get seconds of generated audio) |
202 |
|
|
void jar_xm_get_position(jar_xm_context_t* ctx, uint8_t* pattern_index, uint8_t* pattern, uint8_t* row, uint64_t* samples); |
203 |
|
|
|
204 |
|
|
//** Get the latest time (in number of generated samples) when a particular instrument was triggered in any channel. |
205 |
|
|
// * @note Instrument numbers go from 1 to jar_xm_get_number_of_instruments(...). |
206 |
|
|
uint64_t jar_xm_get_latest_trigger_of_instrument(jar_xm_context_t* ctx, uint16_t); |
207 |
|
|
|
208 |
|
|
//** Get the latest time (in number of generated samples) when a particular sample was triggered in any channel. |
209 |
|
|
// * @note Instrument numbers go from 1 to jar_xm_get_number_of_instruments(...). |
210 |
|
|
// * @note Sample numbers go from 0 to jar_xm_get_nubmer_of_samples(...,instr)-1. |
211 |
|
|
uint64_t jar_xm_get_latest_trigger_of_sample(jar_xm_context_t* ctx, uint16_t instr, uint16_t sample); |
212 |
|
|
|
213 |
|
|
//** Get the latest time (in number of generated samples) when any instrument was triggered in a given channel. |
214 |
|
|
// * @note Channel numbers go from 1 to jar_xm_get_number_of_channels(...). |
215 |
|
|
uint64_t jar_xm_get_latest_trigger_of_channel(jar_xm_context_t* ctx, uint16_t); |
216 |
|
|
|
217 |
|
|
//** Get the number of remaining samples. Divide by 2 to get the number of individual LR data samples. |
218 |
|
|
// * @note This is the remaining number of samples before the loop starts module again, or halts if on last pass. |
219 |
|
|
// * @note This function is very slow and should only be run once, if at all. |
220 |
|
|
uint64_t jar_xm_get_remaining_samples(jar_xm_context_t* ctx); |
221 |
|
|
|
222 |
|
|
#ifdef __cplusplus |
223 |
|
|
} |
224 |
|
|
#endif |
225 |
|
|
//------------------------------------------------------------------------------- |
226 |
|
|
|
227 |
|
|
#ifdef JAR_XM_IMPLEMENTATION |
228 |
|
|
|
229 |
|
|
#include <math.h> |
230 |
|
|
#include <stdio.h> |
231 |
|
|
#include <stdlib.h> |
232 |
|
|
#include <limits.h> |
233 |
|
|
#include <string.h> |
234 |
|
|
|
235 |
|
|
#if JAR_XM_DEBUG //JAR_XM_DEBUG defined as 0 |
236 |
|
|
#include <stdio.h> |
237 |
|
|
#define DEBUG(fmt, ...) do { \ |
238 |
|
|
fprintf(stderr, "%s(): " fmt "\n", __func__, __VA_ARGS__); \ |
239 |
|
|
fflush(stderr); \ |
240 |
|
|
} while(0) |
241 |
|
|
#else |
242 |
|
|
#define DEBUG(...) |
243 |
|
|
#endif |
244 |
|
|
|
245 |
|
|
#if jar_xm_BIG_ENDIAN |
246 |
|
|
#error "Big endian platforms are not yet supported, sorry" |
247 |
|
|
/* Make sure the compiler stops, even if #error is ignored */ |
248 |
|
|
extern int __fail[-1]; |
249 |
|
|
#endif |
250 |
|
|
|
251 |
|
|
/* ----- XM constants ----- */ |
252 |
|
|
#define SAMPLE_NAME_LENGTH 22 |
253 |
|
|
#define INSTRUMENT_NAME_LENGTH 22 |
254 |
|
|
#define MODULE_NAME_LENGTH 20 |
255 |
|
|
#define TRACKER_NAME_LENGTH 20 |
256 |
|
|
#define PATTERN_ORDER_TABLE_LENGTH 256 |
257 |
|
|
#define NUM_NOTES 96 // from 1 to 96, where 1 = C-0 |
258 |
|
|
#define NUM_ENVELOPE_POINTS 12 // to be verified if 12 is the max |
259 |
|
|
#define MAX_NUM_ROWS 256 |
260 |
|
|
|
261 |
|
|
#define jar_xm_SAMPLE_RAMPING_POINTS 8 |
262 |
|
|
|
263 |
|
|
/* ----- Data types ----- */ |
264 |
|
|
|
265 |
|
|
enum jar_xm_waveform_type_e { |
266 |
|
|
jar_xm_SINE_WAVEFORM = 0, |
267 |
|
|
jar_xm_RAMP_DOWN_WAVEFORM = 1, |
268 |
|
|
jar_xm_SQUARE_WAVEFORM = 2, |
269 |
|
|
jar_xm_RANDOM_WAVEFORM = 3, |
270 |
|
|
jar_xm_RAMP_UP_WAVEFORM = 4, |
271 |
|
|
}; |
272 |
|
|
typedef enum jar_xm_waveform_type_e jar_xm_waveform_type_t; |
273 |
|
|
|
274 |
|
|
enum jar_xm_loop_type_e { |
275 |
|
|
jar_xm_NO_LOOP, |
276 |
|
|
jar_xm_FORWARD_LOOP, |
277 |
|
|
jar_xm_PING_PONG_LOOP, |
278 |
|
|
}; |
279 |
|
|
typedef enum jar_xm_loop_type_e jar_xm_loop_type_t; |
280 |
|
|
|
281 |
|
|
enum jar_xm_frequency_type_e { |
282 |
|
|
jar_xm_LINEAR_FREQUENCIES, |
283 |
|
|
jar_xm_AMIGA_FREQUENCIES, |
284 |
|
|
}; |
285 |
|
|
typedef enum jar_xm_frequency_type_e jar_xm_frequency_type_t; |
286 |
|
|
|
287 |
|
|
struct jar_xm_envelope_point_s { |
288 |
|
|
uint16_t frame; |
289 |
|
|
uint16_t value; |
290 |
|
|
}; |
291 |
|
|
typedef struct jar_xm_envelope_point_s jar_xm_envelope_point_t; |
292 |
|
|
|
293 |
|
|
struct jar_xm_envelope_s { |
294 |
|
|
jar_xm_envelope_point_t points[NUM_ENVELOPE_POINTS]; |
295 |
|
|
uint8_t num_points; |
296 |
|
|
uint8_t sustain_point; |
297 |
|
|
uint8_t loop_start_point; |
298 |
|
|
uint8_t loop_end_point; |
299 |
|
|
bool enabled; |
300 |
|
|
bool sustain_enabled; |
301 |
|
|
bool loop_enabled; |
302 |
|
|
}; |
303 |
|
|
typedef struct jar_xm_envelope_s jar_xm_envelope_t; |
304 |
|
|
|
305 |
|
|
struct jar_xm_sample_s { |
306 |
|
|
char name[SAMPLE_NAME_LENGTH + 1]; |
307 |
|
|
int8_t bits; /* Either 8 or 16 */ |
308 |
|
|
int8_t stereo; |
309 |
|
|
uint32_t length; |
310 |
|
|
uint32_t loop_start; |
311 |
|
|
uint32_t loop_length; |
312 |
|
|
uint32_t loop_end; |
313 |
|
|
float volume; |
314 |
|
|
int8_t finetune; |
315 |
|
|
jar_xm_loop_type_t loop_type; |
316 |
|
|
float panning; |
317 |
|
|
int8_t relative_note; |
318 |
|
|
uint64_t latest_trigger; |
319 |
|
|
|
320 |
|
|
float* data; |
321 |
|
|
}; |
322 |
|
|
typedef struct jar_xm_sample_s jar_xm_sample_t; |
323 |
|
|
|
324 |
|
|
struct jar_xm_instrument_s { |
325 |
|
|
char name[INSTRUMENT_NAME_LENGTH + 1]; |
326 |
|
|
uint16_t num_samples; |
327 |
|
|
uint8_t sample_of_notes[NUM_NOTES]; |
328 |
|
|
jar_xm_envelope_t volume_envelope; |
329 |
|
|
jar_xm_envelope_t panning_envelope; |
330 |
|
|
jar_xm_waveform_type_t vibrato_type; |
331 |
|
|
uint8_t vibrato_sweep; |
332 |
|
|
uint8_t vibrato_depth; |
333 |
|
|
uint8_t vibrato_rate; |
334 |
|
|
uint16_t volume_fadeout; |
335 |
|
|
uint64_t latest_trigger; |
336 |
|
|
bool muted; |
337 |
|
|
|
338 |
|
|
jar_xm_sample_t* samples; |
339 |
|
|
}; |
340 |
|
|
typedef struct jar_xm_instrument_s jar_xm_instrument_t; |
341 |
|
|
|
342 |
|
|
struct jar_xm_pattern_slot_s { |
343 |
|
|
uint8_t note; /* 1-96, 97 = Key Off note */ |
344 |
|
|
uint8_t instrument; /* 1-128 */ |
345 |
|
|
uint8_t volume_column; |
346 |
|
|
uint8_t effect_type; |
347 |
|
|
uint8_t effect_param; |
348 |
|
|
}; |
349 |
|
|
typedef struct jar_xm_pattern_slot_s jar_xm_pattern_slot_t; |
350 |
|
|
|
351 |
|
|
struct jar_xm_pattern_s { |
352 |
|
|
uint16_t num_rows; |
353 |
|
|
jar_xm_pattern_slot_t* slots; /* Array of size num_rows * num_channels */ |
354 |
|
|
}; |
355 |
|
|
typedef struct jar_xm_pattern_s jar_xm_pattern_t; |
356 |
|
|
|
357 |
|
|
struct jar_xm_module_s { |
358 |
|
|
char name[MODULE_NAME_LENGTH + 1]; |
359 |
|
|
char trackername[TRACKER_NAME_LENGTH + 1]; |
360 |
|
|
uint16_t length; |
361 |
|
|
uint16_t restart_position; |
362 |
|
|
uint16_t num_channels; |
363 |
|
|
uint16_t num_patterns; |
364 |
|
|
uint16_t num_instruments; |
365 |
|
|
uint16_t linear_interpolation; |
366 |
|
|
uint16_t ramping; |
367 |
|
|
jar_xm_frequency_type_t frequency_type; |
368 |
|
|
uint8_t pattern_table[PATTERN_ORDER_TABLE_LENGTH]; |
369 |
|
|
|
370 |
|
|
jar_xm_pattern_t* patterns; |
371 |
|
|
jar_xm_instrument_t* instruments; /* Instrument 1 has index 0, instrument 2 has index 1, etc. */ |
372 |
|
|
}; |
373 |
|
|
typedef struct jar_xm_module_s jar_xm_module_t; |
374 |
|
|
|
375 |
|
|
struct jar_xm_channel_context_s { |
376 |
|
|
float note; |
377 |
|
|
float orig_note; /* The original note before effect modifications, as read in the pattern. */ |
378 |
|
|
jar_xm_instrument_t* instrument; /* Could be NULL */ |
379 |
|
|
jar_xm_sample_t* sample; /* Could be NULL */ |
380 |
|
|
jar_xm_pattern_slot_t* current; |
381 |
|
|
|
382 |
|
|
float sample_position; |
383 |
|
|
float period; |
384 |
|
|
float frequency; |
385 |
|
|
float step; |
386 |
|
|
bool ping; /* For ping-pong samples: true is -->, false is <-- */ |
387 |
|
|
|
388 |
|
|
float volume; /* Ideally between 0 (muted) and 1 (loudest) */ |
389 |
|
|
float panning; /* Between 0 (left) and 1 (right); 0.5 is centered */ |
390 |
|
|
|
391 |
|
|
uint16_t autovibrato_ticks; |
392 |
|
|
|
393 |
|
|
bool sustained; |
394 |
|
|
float fadeout_volume; |
395 |
|
|
float volume_envelope_volume; |
396 |
|
|
float panning_envelope_panning; |
397 |
|
|
uint16_t volume_envelope_frame_count; |
398 |
|
|
uint16_t panning_envelope_frame_count; |
399 |
|
|
|
400 |
|
|
float autovibrato_note_offset; |
401 |
|
|
|
402 |
|
|
bool arp_in_progress; |
403 |
|
|
uint8_t arp_note_offset; |
404 |
|
|
uint8_t volume_slide_param; |
405 |
|
|
uint8_t fine_volume_slide_param; |
406 |
|
|
uint8_t global_volume_slide_param; |
407 |
|
|
uint8_t panning_slide_param; |
408 |
|
|
uint8_t portamento_up_param; |
409 |
|
|
uint8_t portamento_down_param; |
410 |
|
|
uint8_t fine_portamento_up_param; |
411 |
|
|
uint8_t fine_portamento_down_param; |
412 |
|
|
uint8_t extra_fine_portamento_up_param; |
413 |
|
|
uint8_t extra_fine_portamento_down_param; |
414 |
|
|
uint8_t tone_portamento_param; |
415 |
|
|
float tone_portamento_target_period; |
416 |
|
|
uint8_t multi_retrig_param; |
417 |
|
|
uint8_t note_delay_param; |
418 |
|
|
uint8_t pattern_loop_origin; /* Where to restart a E6y loop */ |
419 |
|
|
uint8_t pattern_loop_count; /* How many loop passes have been done */ |
420 |
|
|
bool vibrato_in_progress; |
421 |
|
|
jar_xm_waveform_type_t vibrato_waveform; |
422 |
|
|
bool vibrato_waveform_retrigger; /* True if a new note retriggers the waveform */ |
423 |
|
|
uint8_t vibrato_param; |
424 |
|
|
uint16_t vibrato_ticks; /* Position in the waveform */ |
425 |
|
|
float vibrato_note_offset; |
426 |
|
|
jar_xm_waveform_type_t tremolo_waveform; |
427 |
|
|
bool tremolo_waveform_retrigger; |
428 |
|
|
uint8_t tremolo_param; |
429 |
|
|
uint8_t tremolo_ticks; |
430 |
|
|
float tremolo_volume; |
431 |
|
|
uint8_t tremor_param; |
432 |
|
|
bool tremor_on; |
433 |
|
|
|
434 |
|
|
uint64_t latest_trigger; |
435 |
|
|
bool muted; |
436 |
|
|
|
437 |
|
|
//* These values are updated at the end of each tick, to save a couple of float operations on every generated sample. |
438 |
|
|
float target_panning; |
439 |
|
|
float target_volume; |
440 |
|
|
|
441 |
|
|
unsigned long frame_count; |
442 |
|
|
float end_of_previous_sample_left[jar_xm_SAMPLE_RAMPING_POINTS]; |
443 |
|
|
float end_of_previous_sample_right[jar_xm_SAMPLE_RAMPING_POINTS]; |
444 |
|
|
float curr_left; |
445 |
|
|
float curr_right; |
446 |
|
|
|
447 |
|
|
float actual_panning; |
448 |
|
|
float actual_volume; |
449 |
|
|
}; |
450 |
|
|
typedef struct jar_xm_channel_context_s jar_xm_channel_context_t; |
451 |
|
|
|
452 |
|
|
struct jar_xm_context_s { |
453 |
|
|
void* allocated_memory; |
454 |
|
|
jar_xm_module_t module; |
455 |
|
|
uint32_t rate; |
456 |
|
|
|
457 |
|
|
uint16_t default_tempo; // Number of ticks per row |
458 |
|
|
uint16_t default_bpm; |
459 |
|
|
float default_global_volume; |
460 |
|
|
|
461 |
|
|
uint16_t tempo; // Number of ticks per row |
462 |
|
|
uint16_t bpm; |
463 |
|
|
float global_volume; |
464 |
|
|
|
465 |
|
|
float volume_ramp; /* How much is a channel final volume allowed to change per sample; this is used to avoid abrubt volume changes which manifest as "clicks" in the generated sound. */ |
466 |
|
|
float panning_ramp; /* Same for panning. */ |
467 |
|
|
|
468 |
|
|
uint8_t current_table_index; |
469 |
|
|
uint8_t current_row; |
470 |
|
|
uint16_t current_tick; /* Can go below 255, with high tempo and a pattern delay */ |
471 |
|
|
float remaining_samples_in_tick; |
472 |
|
|
uint64_t generated_samples; |
473 |
|
|
|
474 |
|
|
bool position_jump; |
475 |
|
|
bool pattern_break; |
476 |
|
|
uint8_t jump_dest; |
477 |
|
|
uint8_t jump_row; |
478 |
|
|
|
479 |
|
|
uint16_t extra_ticks; /* Extra ticks to be played before going to the next row - Used for EEy effect */ |
480 |
|
|
|
481 |
|
|
uint8_t* row_loop_count; /* Array of size MAX_NUM_ROWS * module_length */ |
482 |
|
|
uint8_t loop_count; |
483 |
|
|
uint8_t max_loop_count; |
484 |
|
|
|
485 |
|
|
jar_xm_channel_context_t* channels; |
486 |
|
|
}; |
487 |
|
|
|
488 |
|
|
#if JAR_XM_DEFENSIVE |
489 |
|
|
|
490 |
|
|
//** Check the module data for errors/inconsistencies. |
491 |
|
|
// * @returns 0 if everything looks OK. Module should be safe to load. |
492 |
|
|
int jar_xm_check_sanity_preload(const char*, size_t); |
493 |
|
|
|
494 |
|
|
//** Check a loaded module for errors/inconsistencies. |
495 |
|
|
// * @returns 0 if everything looks OK. |
496 |
|
|
int jar_xm_check_sanity_postload(jar_xm_context_t*); |
497 |
|
|
|
498 |
|
|
#endif |
499 |
|
|
|
500 |
|
|
//** Get the number of bytes needed to store the module data in a dynamically allocated blank context. |
501 |
|
|
// * Things that are dynamically allocated: |
502 |
|
|
// * - sample data |
503 |
|
|
// * - sample structures in instruments |
504 |
|
|
// * - pattern data |
505 |
|
|
// * - row loop count arrays |
506 |
|
|
// * - pattern structures in module |
507 |
|
|
// * - instrument structures in module |
508 |
|
|
// * - channel contexts |
509 |
|
|
// * - context structure itself |
510 |
|
|
// * @returns 0 if everything looks OK. |
511 |
|
|
size_t jar_xm_get_memory_needed_for_context(const char*, size_t); |
512 |
|
|
|
513 |
|
|
//** Populate the context from module data. |
514 |
|
|
// * @returns pointer to the memory pool |
515 |
|
|
char* jar_xm_load_module(jar_xm_context_t*, const char*, size_t, char*); |
516 |
|
|
|
517 |
|
✗ |
int jar_xm_create_context(jar_xm_context_t** ctxp, const char* moddata, uint32_t rate) { |
518 |
|
✗ |
return jar_xm_create_context_safe(ctxp, moddata, SIZE_MAX, rate); |
519 |
|
|
} |
520 |
|
|
|
521 |
|
|
#define ALIGN(x, b) (((x) + ((b) - 1)) & ~((b) - 1)) |
522 |
|
|
#define ALIGN_PTR(x, b) (void*)(((uintptr_t)(x) + ((b) - 1)) & ~((b) - 1)) |
523 |
|
✗ |
int jar_xm_create_context_safe(jar_xm_context_t** ctxp, const char* moddata, size_t moddata_length, uint32_t rate) { |
524 |
|
|
#if JAR_XM_DEFENSIVE |
525 |
|
|
int ret; |
526 |
|
|
#endif |
527 |
|
|
size_t bytes_needed; |
528 |
|
|
char* mempool; |
529 |
|
|
jar_xm_context_t* ctx; |
530 |
|
|
|
531 |
|
|
#if JAR_XM_DEFENSIVE |
532 |
|
✗ |
if((ret = jar_xm_check_sanity_preload(moddata, moddata_length))) { |
533 |
|
|
DEBUG("jar_xm_check_sanity_preload() returned %i, module is not safe to load", ret); |
534 |
|
|
return 1; |
535 |
|
|
} |
536 |
|
|
#endif |
537 |
|
|
|
538 |
|
✗ |
bytes_needed = jar_xm_get_memory_needed_for_context(moddata, moddata_length); |
539 |
|
✗ |
mempool = JARXM_MALLOC(bytes_needed); |
540 |
|
✗ |
if(mempool == NULL && bytes_needed > 0) { /* JARXM_MALLOC() failed, trouble ahead */ |
541 |
|
|
DEBUG("call to JARXM_MALLOC() failed, returned %p", (void*)mempool); |
542 |
|
|
return 2; |
543 |
|
|
} |
544 |
|
|
|
545 |
|
|
/* Initialize most of the fields to 0, 0.f, NULL or false depending on type */ |
546 |
|
|
memset(mempool, 0, bytes_needed); |
547 |
|
|
|
548 |
|
✗ |
ctx = (*ctxp = (jar_xm_context_t *)mempool); |
549 |
|
✗ |
ctx->allocated_memory = mempool; /* Keep original pointer for JARXM_FREE() */ |
550 |
|
✗ |
mempool += sizeof(jar_xm_context_t); |
551 |
|
|
|
552 |
|
✗ |
ctx->rate = rate; |
553 |
|
✗ |
mempool = jar_xm_load_module(ctx, moddata, moddata_length, mempool); |
554 |
|
✗ |
mempool = ALIGN_PTR(mempool, 16); |
555 |
|
|
|
556 |
|
✗ |
ctx->channels = (jar_xm_channel_context_t*)mempool; |
557 |
|
✗ |
mempool += ctx->module.num_channels * sizeof(jar_xm_channel_context_t); |
558 |
|
✗ |
mempool = ALIGN_PTR(mempool, 16); |
559 |
|
|
|
560 |
|
✗ |
ctx->default_global_volume = 1.f; |
561 |
|
✗ |
ctx->global_volume = ctx->default_global_volume; |
562 |
|
|
|
563 |
|
✗ |
ctx->volume_ramp = (1.f / 128.f); |
564 |
|
✗ |
ctx->panning_ramp = (1.f / 128.f); |
565 |
|
|
|
566 |
|
✗ |
for(uint8_t i = 0; i < ctx->module.num_channels; ++i) { |
567 |
|
✗ |
jar_xm_channel_context_t *ch = ctx->channels + i; |
568 |
|
✗ |
ch->ping = true; |
569 |
|
✗ |
ch->vibrato_waveform = jar_xm_SINE_WAVEFORM; |
570 |
|
✗ |
ch->vibrato_waveform_retrigger = true; |
571 |
|
✗ |
ch->tremolo_waveform = jar_xm_SINE_WAVEFORM; |
572 |
|
✗ |
ch->tremolo_waveform_retrigger = true; |
573 |
|
✗ |
ch->volume = ch->volume_envelope_volume = ch->fadeout_volume = 1.0f; |
574 |
|
✗ |
ch->panning = ch->panning_envelope_panning = .5f; |
575 |
|
✗ |
ch->actual_volume = .0f; |
576 |
|
✗ |
ch->actual_panning = .5f; |
577 |
|
|
} |
578 |
|
|
|
579 |
|
✗ |
mempool = ALIGN_PTR(mempool, 16); |
580 |
|
✗ |
ctx->row_loop_count = (uint8_t *)mempool; |
581 |
|
|
mempool += MAX_NUM_ROWS * sizeof(uint8_t); |
582 |
|
|
|
583 |
|
|
#if JAR_XM_DEFENSIVE |
584 |
|
✗ |
if((ret = jar_xm_check_sanity_postload(ctx))) { DEBUG("jar_xm_check_sanity_postload() returned %i, module is not safe to play", ret); |
585 |
|
✗ |
jar_xm_free_context(ctx); |
586 |
|
✗ |
return 1; |
587 |
|
|
} |
588 |
|
|
#endif |
589 |
|
|
|
590 |
|
|
return 0; |
591 |
|
|
} |
592 |
|
|
|
593 |
|
✗ |
void jar_xm_free_context(jar_xm_context_t *ctx) { |
594 |
|
✗ |
if (ctx != NULL) { JARXM_FREE(ctx->allocated_memory); } |
595 |
|
|
} |
596 |
|
|
|
597 |
|
✗ |
void jar_xm_set_max_loop_count(jar_xm_context_t *ctx, uint8_t loopcnt) { |
598 |
|
✗ |
ctx->max_loop_count = loopcnt; |
599 |
|
|
} |
600 |
|
|
|
601 |
|
✗ |
uint8_t jar_xm_get_loop_count(jar_xm_context_t *ctx) { |
602 |
|
✗ |
return ctx->loop_count; |
603 |
|
|
} |
604 |
|
|
|
605 |
|
✗ |
bool jar_xm_mute_channel(jar_xm_context_t *ctx, uint16_t channel, bool mute) { |
606 |
|
✗ |
bool old = ctx->channels[channel - 1].muted; |
607 |
|
✗ |
ctx->channels[channel - 1].muted = mute; |
608 |
|
✗ |
return old; |
609 |
|
|
} |
610 |
|
|
|
611 |
|
✗ |
bool jar_xm_mute_instrument(jar_xm_context_t *ctx, uint16_t instr, bool mute) { |
612 |
|
✗ |
bool old = ctx->module.instruments[instr - 1].muted; |
613 |
|
✗ |
ctx->module.instruments[instr - 1].muted = mute; |
614 |
|
✗ |
return old; |
615 |
|
|
} |
616 |
|
|
|
617 |
|
✗ |
const char* jar_xm_get_module_name(jar_xm_context_t *ctx) { |
618 |
|
✗ |
return ctx->module.name; |
619 |
|
|
} |
620 |
|
|
|
621 |
|
✗ |
const char* jar_xm_get_tracker_name(jar_xm_context_t *ctx) { |
622 |
|
✗ |
return ctx->module.trackername; |
623 |
|
|
} |
624 |
|
|
|
625 |
|
✗ |
uint16_t jar_xm_get_number_of_channels(jar_xm_context_t *ctx) { |
626 |
|
✗ |
return ctx->module.num_channels; |
627 |
|
|
} |
628 |
|
|
|
629 |
|
✗ |
uint16_t jar_xm_get_module_length(jar_xm_context_t *ctx) { |
630 |
|
✗ |
return ctx->module.length; |
631 |
|
|
} |
632 |
|
|
|
633 |
|
✗ |
uint16_t jar_xm_get_number_of_patterns(jar_xm_context_t *ctx) { |
634 |
|
✗ |
return ctx->module.num_patterns; |
635 |
|
|
} |
636 |
|
|
|
637 |
|
✗ |
uint16_t jar_xm_get_number_of_rows(jar_xm_context_t *ctx, uint16_t pattern) { |
638 |
|
✗ |
return ctx->module.patterns[pattern].num_rows; |
639 |
|
|
} |
640 |
|
|
|
641 |
|
✗ |
uint16_t jar_xm_get_number_of_instruments(jar_xm_context_t *ctx) { |
642 |
|
✗ |
return ctx->module.num_instruments; |
643 |
|
|
} |
644 |
|
|
|
645 |
|
✗ |
uint16_t jar_xm_get_number_of_samples(jar_xm_context_t *ctx, uint16_t instrument) { |
646 |
|
✗ |
return ctx->module.instruments[instrument - 1].num_samples; |
647 |
|
|
} |
648 |
|
|
|
649 |
|
✗ |
void jar_xm_get_playing_speed(jar_xm_context_t *ctx, uint16_t *bpm, uint16_t *tempo) { |
650 |
|
✗ |
if(bpm) *bpm = ctx->bpm; |
651 |
|
✗ |
if(tempo) *tempo = ctx->tempo; |
652 |
|
|
} |
653 |
|
|
|
654 |
|
✗ |
void jar_xm_get_position(jar_xm_context_t *ctx, uint8_t *pattern_index, uint8_t *pattern, uint8_t *row, uint64_t *samples) { |
655 |
|
✗ |
if(pattern_index) *pattern_index = ctx->current_table_index; |
656 |
|
✗ |
if(pattern) *pattern = ctx->module.pattern_table[ctx->current_table_index]; |
657 |
|
✗ |
if(row) *row = ctx->current_row; |
658 |
|
✗ |
if(samples) *samples = ctx->generated_samples; |
659 |
|
|
} |
660 |
|
|
|
661 |
|
✗ |
uint64_t jar_xm_get_latest_trigger_of_instrument(jar_xm_context_t *ctx, uint16_t instr) { |
662 |
|
✗ |
return ctx->module.instruments[instr - 1].latest_trigger; |
663 |
|
|
} |
664 |
|
|
|
665 |
|
✗ |
uint64_t jar_xm_get_latest_trigger_of_sample(jar_xm_context_t *ctx, uint16_t instr, uint16_t sample) { |
666 |
|
✗ |
return ctx->module.instruments[instr - 1].samples[sample].latest_trigger; |
667 |
|
|
} |
668 |
|
|
|
669 |
|
✗ |
uint64_t jar_xm_get_latest_trigger_of_channel(jar_xm_context_t *ctx, uint16_t chn) { |
670 |
|
✗ |
return ctx->channels[chn - 1].latest_trigger; |
671 |
|
|
} |
672 |
|
|
|
673 |
|
|
//* .xm files are little-endian. (XXX: Are they really?) |
674 |
|
|
|
675 |
|
|
//* Bound reader macros. |
676 |
|
|
//* If we attempt to read the buffer out-of-bounds, pretend that the buffer is infinitely padded with zeroes. |
677 |
|
|
#define READ_U8(offset) (((offset) < moddata_length) ? (*(uint8_t*)(moddata + (offset))) : 0) |
678 |
|
|
#define READ_U16(offset) ((uint16_t)READ_U8(offset) | ((uint16_t)READ_U8((offset) + 1) << 8)) |
679 |
|
|
#define READ_U32(offset) ((uint32_t)READ_U16(offset) | ((uint32_t)READ_U16((offset) + 2) << 16)) |
680 |
|
|
#define READ_MEMCPY(ptr, offset, length) memcpy_pad(ptr, length, moddata, moddata_length, offset) |
681 |
|
|
|
682 |
|
✗ |
static void memcpy_pad(void *dst, size_t dst_len, const void *src, size_t src_len, size_t offset) { |
683 |
|
|
uint8_t *dst_c = dst; |
684 |
|
|
const uint8_t *src_c = src; |
685 |
|
|
|
686 |
|
|
/* how many bytes can be copied without overrunning `src` */ |
687 |
|
✗ |
size_t copy_bytes = (src_len >= offset) ? (src_len - offset) : 0; |
688 |
|
✗ |
copy_bytes = copy_bytes > dst_len ? dst_len : copy_bytes; |
689 |
|
|
|
690 |
|
✗ |
memcpy(dst_c, src_c + offset, copy_bytes); |
691 |
|
|
/* padded bytes */ |
692 |
|
✗ |
memset(dst_c + copy_bytes, 0, dst_len - copy_bytes); |
693 |
|
|
} |
694 |
|
|
|
695 |
|
|
#if JAR_XM_DEFENSIVE |
696 |
|
|
|
697 |
|
✗ |
int jar_xm_check_sanity_preload(const char* module, size_t module_length) { |
698 |
|
✗ |
if(module_length < 60) { return 4; } |
699 |
|
✗ |
if(memcmp("Extended Module: ", module, 17) != 0) { return 1; } |
700 |
|
✗ |
if(module[37] != 0x1A) { return 2; } |
701 |
|
✗ |
if(module[59] != 0x01 || module[58] != 0x04) { return 3; } /* Not XM 1.04 */ |
702 |
|
|
return 0; |
703 |
|
|
} |
704 |
|
|
|
705 |
|
✗ |
int jar_xm_check_sanity_postload(jar_xm_context_t* ctx) { |
706 |
|
|
/* Check the POT */ |
707 |
|
✗ |
for(uint8_t i = 0; i < ctx->module.length; ++i) { |
708 |
|
✗ |
if(ctx->module.pattern_table[i] >= ctx->module.num_patterns) { |
709 |
|
✗ |
if(i+1 == ctx->module.length && ctx->module.length > 1) { |
710 |
|
|
DEBUG("trimming invalid POT at pos %X", i); |
711 |
|
✗ |
--ctx->module.length; |
712 |
|
|
} else { |
713 |
|
|
DEBUG("module has invalid POT, pos %X references nonexistent pattern %X", i, ctx->module.pattern_table[i]); |
714 |
|
|
return 1; |
715 |
|
|
} |
716 |
|
|
} |
717 |
|
|
} |
718 |
|
|
|
719 |
|
|
return 0; |
720 |
|
|
} |
721 |
|
|
|
722 |
|
|
#endif |
723 |
|
|
|
724 |
|
✗ |
size_t jar_xm_get_memory_needed_for_context(const char* moddata, size_t moddata_length) { |
725 |
|
|
size_t memory_needed = 0; |
726 |
|
|
size_t offset = 60; /* 60 = Skip the first header */ |
727 |
|
|
uint16_t num_channels; |
728 |
|
|
uint16_t num_patterns; |
729 |
|
|
uint16_t num_instruments; |
730 |
|
|
|
731 |
|
|
/* Read the module header */ |
732 |
|
✗ |
num_channels = READ_U16(offset + 8); |
733 |
|
✗ |
num_patterns = READ_U16(offset + 10); |
734 |
|
✗ |
memory_needed += num_patterns * sizeof(jar_xm_pattern_t); |
735 |
|
✗ |
memory_needed = ALIGN(memory_needed, 16); |
736 |
|
✗ |
num_instruments = READ_U16(offset + 12); |
737 |
|
✗ |
memory_needed += num_instruments * sizeof(jar_xm_instrument_t); |
738 |
|
✗ |
memory_needed = ALIGN(memory_needed, 16); |
739 |
|
✗ |
memory_needed += MAX_NUM_ROWS * READ_U16(offset + 4) * sizeof(uint8_t); /* Module length */ |
740 |
|
|
|
741 |
|
✗ |
offset += READ_U32(offset); /* Header size */ |
742 |
|
|
|
743 |
|
|
/* Read pattern headers */ |
744 |
|
✗ |
for(uint16_t i = 0; i < num_patterns; ++i) { |
745 |
|
|
uint16_t num_rows; |
746 |
|
✗ |
num_rows = READ_U16(offset + 5); |
747 |
|
✗ |
memory_needed += num_rows * num_channels * sizeof(jar_xm_pattern_slot_t); |
748 |
|
✗ |
offset += READ_U32(offset) + READ_U16(offset + 7); /* Pattern header length + packed pattern data size */ |
749 |
|
|
} |
750 |
|
✗ |
memory_needed = ALIGN(memory_needed, 16); |
751 |
|
|
|
752 |
|
|
/* Read instrument headers */ |
753 |
|
✗ |
for(uint16_t i = 0; i < num_instruments; ++i) { |
754 |
|
|
uint16_t num_samples; |
755 |
|
|
uint32_t sample_header_size = 0; |
756 |
|
|
uint32_t sample_size_aggregate = 0; |
757 |
|
✗ |
num_samples = READ_U16(offset + 27); |
758 |
|
✗ |
memory_needed += num_samples * sizeof(jar_xm_sample_t); |
759 |
|
✗ |
if(num_samples > 0) { sample_header_size = READ_U32(offset + 29); } |
760 |
|
|
|
761 |
|
✗ |
offset += READ_U32(offset); /* Instrument header size */ |
762 |
|
✗ |
for(uint16_t j = 0; j < num_samples; ++j) { |
763 |
|
|
uint32_t sample_size; |
764 |
|
|
uint8_t flags; |
765 |
|
✗ |
sample_size = READ_U32(offset); |
766 |
|
✗ |
flags = READ_U8(offset + 14); |
767 |
|
✗ |
sample_size_aggregate += sample_size; |
768 |
|
|
|
769 |
|
✗ |
if(flags & (1 << 4)) { /* 16 bit sample */ |
770 |
|
✗ |
memory_needed += sample_size * (sizeof(float) >> 1); |
771 |
|
|
} else { /* 8 bit sample */ |
772 |
|
✗ |
memory_needed += sample_size * sizeof(float); |
773 |
|
|
} |
774 |
|
✗ |
offset += sample_header_size; |
775 |
|
|
} |
776 |
|
✗ |
offset += sample_size_aggregate; |
777 |
|
|
} |
778 |
|
|
|
779 |
|
✗ |
memory_needed += num_channels * sizeof(jar_xm_channel_context_t); |
780 |
|
✗ |
memory_needed += sizeof(jar_xm_context_t); |
781 |
|
✗ |
return memory_needed; |
782 |
|
|
} |
783 |
|
|
|
784 |
|
✗ |
char* jar_xm_load_module(jar_xm_context_t* ctx, const char* moddata, size_t moddata_length, char* mempool) { |
785 |
|
|
size_t offset = 0; |
786 |
|
|
jar_xm_module_t* mod = &(ctx->module); |
787 |
|
|
|
788 |
|
|
/* Read XM header */ |
789 |
|
✗ |
READ_MEMCPY(mod->name, offset + 17, MODULE_NAME_LENGTH); |
790 |
|
✗ |
READ_MEMCPY(mod->trackername, offset + 38, TRACKER_NAME_LENGTH); |
791 |
|
|
offset += 60; |
792 |
|
|
|
793 |
|
|
/* Read module header */ |
794 |
|
✗ |
uint32_t header_size = READ_U32(offset); |
795 |
|
✗ |
mod->length = READ_U16(offset + 4); |
796 |
|
✗ |
mod->restart_position = READ_U16(offset + 6); |
797 |
|
✗ |
mod->num_channels = READ_U16(offset + 8); |
798 |
|
✗ |
mod->num_patterns = READ_U16(offset + 10); |
799 |
|
✗ |
mod->num_instruments = READ_U16(offset + 12); |
800 |
|
✗ |
mod->patterns = (jar_xm_pattern_t*)mempool; |
801 |
|
✗ |
mod->linear_interpolation = 1; // Linear interpolation can be set after loading |
802 |
|
✗ |
mod->ramping = 1; // ramping can be set after loading |
803 |
|
✗ |
mempool += mod->num_patterns * sizeof(jar_xm_pattern_t); |
804 |
|
✗ |
mempool = ALIGN_PTR(mempool, 16); |
805 |
|
✗ |
mod->instruments = (jar_xm_instrument_t*)mempool; |
806 |
|
✗ |
mempool += mod->num_instruments * sizeof(jar_xm_instrument_t); |
807 |
|
✗ |
mempool = ALIGN_PTR(mempool, 16); |
808 |
|
✗ |
uint16_t flags = READ_U32(offset + 14); |
809 |
|
✗ |
mod->frequency_type = (flags & (1 << 0)) ? jar_xm_LINEAR_FREQUENCIES : jar_xm_AMIGA_FREQUENCIES; |
810 |
|
✗ |
ctx->default_tempo = READ_U16(offset + 16); |
811 |
|
✗ |
ctx->default_bpm = READ_U16(offset + 18); |
812 |
|
✗ |
ctx->tempo =ctx->default_tempo; |
813 |
|
✗ |
ctx->bpm = ctx->default_bpm; |
814 |
|
|
|
815 |
|
✗ |
READ_MEMCPY(mod->pattern_table, offset + 20, PATTERN_ORDER_TABLE_LENGTH); |
816 |
|
✗ |
offset += header_size; |
817 |
|
|
|
818 |
|
|
/* Read patterns */ |
819 |
|
✗ |
for(uint16_t i = 0; i < mod->num_patterns; ++i) { |
820 |
|
✗ |
uint16_t packed_patterndata_size = READ_U16(offset + 7); |
821 |
|
✗ |
jar_xm_pattern_t* pat = mod->patterns + i; |
822 |
|
✗ |
pat->num_rows = READ_U16(offset + 5); |
823 |
|
✗ |
pat->slots = (jar_xm_pattern_slot_t*)mempool; |
824 |
|
✗ |
mempool += mod->num_channels * pat->num_rows * sizeof(jar_xm_pattern_slot_t); |
825 |
|
✗ |
offset += READ_U32(offset); /* Pattern header length */ |
826 |
|
|
|
827 |
|
✗ |
if(packed_patterndata_size == 0) { /* No pattern data is present */ |
828 |
|
✗ |
memset(pat->slots, 0, sizeof(jar_xm_pattern_slot_t) * pat->num_rows * mod->num_channels); |
829 |
|
|
} else { |
830 |
|
|
/* This isn't your typical for loop */ |
831 |
|
✗ |
for(uint16_t j = 0, k = 0; j < packed_patterndata_size; ++k) { |
832 |
|
✗ |
uint8_t note = READ_U8(offset + j); |
833 |
|
✗ |
jar_xm_pattern_slot_t* slot = pat->slots + k; |
834 |
|
✗ |
if(note & (1 << 7)) { |
835 |
|
|
/* MSB is set, this is a compressed packet */ |
836 |
|
✗ |
++j; |
837 |
|
✗ |
if(note & (1 << 0)) { /* Note follows */ |
838 |
|
✗ |
slot->note = READ_U8(offset + j); |
839 |
|
✗ |
++j; |
840 |
|
|
} else { |
841 |
|
✗ |
slot->note = 0; |
842 |
|
|
} |
843 |
|
✗ |
if(note & (1 << 1)) { /* Instrument follows */ |
844 |
|
✗ |
slot->instrument = READ_U8(offset + j); |
845 |
|
✗ |
++j; |
846 |
|
|
} else { |
847 |
|
✗ |
slot->instrument = 0; |
848 |
|
|
} |
849 |
|
✗ |
if(note & (1 << 2)) { /* Volume column follows */ |
850 |
|
✗ |
slot->volume_column = READ_U8(offset + j); |
851 |
|
✗ |
++j; |
852 |
|
|
} else { |
853 |
|
✗ |
slot->volume_column = 0; |
854 |
|
|
} |
855 |
|
✗ |
if(note & (1 << 3)) { /* Effect follows */ |
856 |
|
✗ |
slot->effect_type = READ_U8(offset + j); |
857 |
|
✗ |
++j; |
858 |
|
|
} else { |
859 |
|
✗ |
slot->effect_type = 0; |
860 |
|
|
} |
861 |
|
✗ |
if(note & (1 << 4)) { /* Effect parameter follows */ |
862 |
|
✗ |
slot->effect_param = READ_U8(offset + j); |
863 |
|
✗ |
++j; |
864 |
|
|
} else { |
865 |
|
✗ |
slot->effect_param = 0; |
866 |
|
|
} |
867 |
|
|
} else { /* Uncompressed packet */ |
868 |
|
✗ |
slot->note = note; |
869 |
|
✗ |
slot->instrument = READ_U8(offset + j + 1); |
870 |
|
✗ |
slot->volume_column = READ_U8(offset + j + 2); |
871 |
|
✗ |
slot->effect_type = READ_U8(offset + j + 3); |
872 |
|
✗ |
slot->effect_param = READ_U8(offset + j + 4); |
873 |
|
✗ |
j += 5; |
874 |
|
|
} |
875 |
|
|
} |
876 |
|
|
} |
877 |
|
|
|
878 |
|
✗ |
offset += packed_patterndata_size; |
879 |
|
|
} |
880 |
|
✗ |
mempool = ALIGN_PTR(mempool, 16); |
881 |
|
|
|
882 |
|
|
/* Read instruments */ |
883 |
|
✗ |
for(uint16_t i = 0; i < ctx->module.num_instruments; ++i) { |
884 |
|
|
uint32_t sample_header_size = 0; |
885 |
|
✗ |
jar_xm_instrument_t* instr = mod->instruments + i; |
886 |
|
|
|
887 |
|
✗ |
READ_MEMCPY(instr->name, offset + 4, INSTRUMENT_NAME_LENGTH); |
888 |
|
✗ |
instr->num_samples = READ_U16(offset + 27); |
889 |
|
|
|
890 |
|
✗ |
if(instr->num_samples > 0) { |
891 |
|
|
/* Read extra header properties */ |
892 |
|
✗ |
sample_header_size = READ_U32(offset + 29); |
893 |
|
✗ |
READ_MEMCPY(instr->sample_of_notes, offset + 33, NUM_NOTES); |
894 |
|
|
|
895 |
|
✗ |
instr->volume_envelope.num_points = READ_U8(offset + 225); |
896 |
|
✗ |
instr->panning_envelope.num_points = READ_U8(offset + 226); |
897 |
|
|
|
898 |
|
✗ |
for(uint8_t j = 0; j < instr->volume_envelope.num_points; ++j) { |
899 |
|
✗ |
instr->volume_envelope.points[j].frame = READ_U16(offset + 129 + 4 * j); |
900 |
|
✗ |
instr->volume_envelope.points[j].value = READ_U16(offset + 129 + 4 * j + 2); |
901 |
|
|
} |
902 |
|
|
|
903 |
|
✗ |
for(uint8_t j = 0; j < instr->panning_envelope.num_points; ++j) { |
904 |
|
✗ |
instr->panning_envelope.points[j].frame = READ_U16(offset + 177 + 4 * j); |
905 |
|
✗ |
instr->panning_envelope.points[j].value = READ_U16(offset + 177 + 4 * j + 2); |
906 |
|
|
} |
907 |
|
|
|
908 |
|
✗ |
instr->volume_envelope.sustain_point = READ_U8(offset + 227); |
909 |
|
✗ |
instr->volume_envelope.loop_start_point = READ_U8(offset + 228); |
910 |
|
✗ |
instr->volume_envelope.loop_end_point = READ_U8(offset + 229); |
911 |
|
✗ |
instr->panning_envelope.sustain_point = READ_U8(offset + 230); |
912 |
|
✗ |
instr->panning_envelope.loop_start_point = READ_U8(offset + 231); |
913 |
|
✗ |
instr->panning_envelope.loop_end_point = READ_U8(offset + 232); |
914 |
|
|
|
915 |
|
✗ |
uint8_t flags = READ_U8(offset + 233); |
916 |
|
✗ |
instr->volume_envelope.enabled = flags & (1 << 0); |
917 |
|
✗ |
instr->volume_envelope.sustain_enabled = flags & (1 << 1); |
918 |
|
✗ |
instr->volume_envelope.loop_enabled = flags & (1 << 2); |
919 |
|
|
|
920 |
|
✗ |
flags = READ_U8(offset + 234); |
921 |
|
✗ |
instr->panning_envelope.enabled = flags & (1 << 0); |
922 |
|
✗ |
instr->panning_envelope.sustain_enabled = flags & (1 << 1); |
923 |
|
✗ |
instr->panning_envelope.loop_enabled = flags & (1 << 2); |
924 |
|
✗ |
instr->vibrato_type = READ_U8(offset + 235); |
925 |
|
✗ |
if(instr->vibrato_type == 2) { |
926 |
|
✗ |
instr->vibrato_type = 1; |
927 |
|
✗ |
} else if(instr->vibrato_type == 1) { |
928 |
|
✗ |
instr->vibrato_type = 2; |
929 |
|
|
} |
930 |
|
✗ |
instr->vibrato_sweep = READ_U8(offset + 236); |
931 |
|
✗ |
instr->vibrato_depth = READ_U8(offset + 237); |
932 |
|
✗ |
instr->vibrato_rate = READ_U8(offset + 238); |
933 |
|
✗ |
instr->volume_fadeout = READ_U16(offset + 239); |
934 |
|
✗ |
instr->samples = (jar_xm_sample_t*)mempool; |
935 |
|
✗ |
mempool += instr->num_samples * sizeof(jar_xm_sample_t); |
936 |
|
|
} else { |
937 |
|
✗ |
instr->samples = NULL; |
938 |
|
|
} |
939 |
|
|
|
940 |
|
|
/* Instrument header size */ |
941 |
|
✗ |
offset += READ_U32(offset); |
942 |
|
|
|
943 |
|
✗ |
for(int j = 0; j < instr->num_samples; ++j) { |
944 |
|
|
/* Read sample header */ |
945 |
|
✗ |
jar_xm_sample_t* sample = instr->samples + j; |
946 |
|
|
|
947 |
|
✗ |
sample->length = READ_U32(offset); |
948 |
|
✗ |
sample->loop_start = READ_U32(offset + 4); |
949 |
|
✗ |
sample->loop_length = READ_U32(offset + 8); |
950 |
|
✗ |
sample->loop_end = sample->loop_start + sample->loop_length; |
951 |
|
✗ |
sample->volume = (float)(READ_U8(offset + 12) << 2) / 256.f; |
952 |
|
✗ |
if (sample->volume > 1.0f) {sample->volume = 1.f;}; |
953 |
|
✗ |
sample->finetune = (int8_t)READ_U8(offset + 13); |
954 |
|
|
|
955 |
|
✗ |
uint8_t flags = READ_U8(offset + 14); |
956 |
|
✗ |
switch (flags & 3) { |
957 |
|
|
case 2: |
958 |
|
|
case 3: |
959 |
|
|
sample->loop_type = jar_xm_PING_PONG_LOOP; |
960 |
|
✗ |
case 1: |
961 |
|
✗ |
sample->loop_type = jar_xm_FORWARD_LOOP; |
962 |
|
✗ |
break; |
963 |
|
✗ |
default: |
964 |
|
✗ |
sample->loop_type = jar_xm_NO_LOOP; |
965 |
|
✗ |
break; |
966 |
|
|
}; |
967 |
|
✗ |
sample->bits = (flags & 0x10) ? 16 : 8; |
968 |
|
✗ |
sample->stereo = (flags & 0x20) ? 1 : 0; |
969 |
|
✗ |
sample->panning = (float)READ_U8(offset + 15) / 255.f; |
970 |
|
✗ |
sample->relative_note = (int8_t)READ_U8(offset + 16); |
971 |
|
✗ |
READ_MEMCPY(sample->name, 18, SAMPLE_NAME_LENGTH); |
972 |
|
✗ |
sample->data = (float*)mempool; |
973 |
|
✗ |
if(sample->bits == 16) { |
974 |
|
|
/* 16 bit sample */ |
975 |
|
✗ |
mempool += sample->length * (sizeof(float) >> 1); |
976 |
|
✗ |
sample->loop_start >>= 1; |
977 |
|
✗ |
sample->loop_length >>= 1; |
978 |
|
✗ |
sample->loop_end >>= 1; |
979 |
|
✗ |
sample->length >>= 1; |
980 |
|
|
} else { |
981 |
|
|
/* 8 bit sample */ |
982 |
|
✗ |
mempool += sample->length * sizeof(float); |
983 |
|
|
} |
984 |
|
|
// Adjust loop points to reflect half of the reported length (stereo) |
985 |
|
✗ |
if (sample->stereo && sample->loop_type != jar_xm_NO_LOOP) { |
986 |
|
✗ |
div_t lstart = div(READ_U32(offset + 4), 2); |
987 |
|
✗ |
sample->loop_start = lstart.quot; |
988 |
|
✗ |
div_t llength = div(READ_U32(offset + 8), 2); |
989 |
|
✗ |
sample->loop_length = llength.quot; |
990 |
|
✗ |
sample->loop_end = sample->loop_start + sample->loop_length; |
991 |
|
|
}; |
992 |
|
|
|
993 |
|
✗ |
offset += sample_header_size; |
994 |
|
|
} |
995 |
|
|
|
996 |
|
|
// Read all samples and convert them to float values |
997 |
|
✗ |
for(int j = 0; j < instr->num_samples; ++j) { |
998 |
|
|
/* Read sample data */ |
999 |
|
✗ |
jar_xm_sample_t* sample = instr->samples + j; |
1000 |
|
✗ |
int length = sample->length; |
1001 |
|
✗ |
if (sample->stereo) { |
1002 |
|
|
// Since it is stereo, we cut the sample in half (treated as single channel) |
1003 |
|
✗ |
div_t result = div(sample->length, 2); |
1004 |
|
✗ |
if(sample->bits == 16) { |
1005 |
|
|
int16_t v = 0; |
1006 |
|
✗ |
for(int k = 0; k < length; ++k) { |
1007 |
|
✗ |
if (k == result.quot) { v = 0;}; |
1008 |
|
✗ |
v = v + (int16_t)READ_U16(offset + (k << 1)); |
1009 |
|
✗ |
sample->data[k] = (float) v / 32768.f ;//* sign; |
1010 |
|
✗ |
if(sample->data[k] < -1.0) {sample->data[k] = -1.0;} else if(sample->data[k] > 1.0) {sample->data[k] = 1.0;}; |
1011 |
|
|
} |
1012 |
|
✗ |
offset += sample->length << 1; |
1013 |
|
|
} else { |
1014 |
|
|
int8_t v = 0; |
1015 |
|
✗ |
for(int k = 0; k < length; ++k) { |
1016 |
|
✗ |
if (k == result.quot) { v = 0;}; |
1017 |
|
✗ |
v = v + (int8_t)READ_U8(offset + k); |
1018 |
|
✗ |
sample->data[k] = (float)v / 128.f ;//* sign; |
1019 |
|
✗ |
if(sample->data[k] < -1.0) {sample->data[k] = -1.0;} else if(sample->data[k] > 1.0) {sample->data[k] = 1.0;}; |
1020 |
|
|
} |
1021 |
|
✗ |
offset += sample->length; |
1022 |
|
|
}; |
1023 |
|
✗ |
sample->length = result.quot; |
1024 |
|
|
} else { |
1025 |
|
✗ |
if(sample->bits == 16) { |
1026 |
|
|
int16_t v = 0; |
1027 |
|
✗ |
for(int k = 0; k < length; ++k) { |
1028 |
|
✗ |
v = v + (int16_t)READ_U16(offset + (k << 1)); |
1029 |
|
✗ |
sample->data[k] = (float) v / 32768.f ;//* sign; |
1030 |
|
✗ |
if(sample->data[k] < -1.0) {sample->data[k] = -1.0;} else if(sample->data[k] > 1.0) {sample->data[k] = 1.0;}; |
1031 |
|
|
} |
1032 |
|
✗ |
offset += sample->length << 1; |
1033 |
|
|
} else { |
1034 |
|
|
int8_t v = 0; |
1035 |
|
✗ |
for(int k = 0; k < length; ++k) { |
1036 |
|
✗ |
v = v + (int8_t)READ_U8(offset + k); |
1037 |
|
✗ |
sample->data[k] = (float)v / 128.f ;//* sign; |
1038 |
|
✗ |
if(sample->data[k] < -1.0) {sample->data[k] = -1.0;} else if(sample->data[k] > 1.0) {sample->data[k] = 1.0;}; |
1039 |
|
|
} |
1040 |
|
✗ |
offset += sample->length; |
1041 |
|
|
} |
1042 |
|
|
} |
1043 |
|
|
}; |
1044 |
|
|
}; |
1045 |
|
✗ |
return mempool; |
1046 |
|
|
}; |
1047 |
|
|
|
1048 |
|
|
//------------------------------------------------------------------------------- |
1049 |
|
|
//THE FOLLOWING IS FOR PLAYING |
1050 |
|
|
static float jar_xm_waveform(jar_xm_waveform_type_t, uint8_t); |
1051 |
|
|
static void jar_xm_autovibrato(jar_xm_context_t*, jar_xm_channel_context_t*); |
1052 |
|
|
static void jar_xm_vibrato(jar_xm_context_t*, jar_xm_channel_context_t*, uint8_t, uint16_t); |
1053 |
|
|
static void jar_xm_tremolo(jar_xm_context_t*, jar_xm_channel_context_t*, uint8_t, uint16_t); |
1054 |
|
|
static void jar_xm_arpeggio(jar_xm_context_t*, jar_xm_channel_context_t*, uint8_t, uint16_t); |
1055 |
|
|
static void jar_xm_tone_portamento(jar_xm_context_t*, jar_xm_channel_context_t*); |
1056 |
|
|
static void jar_xm_pitch_slide(jar_xm_context_t*, jar_xm_channel_context_t*, float); |
1057 |
|
|
static void jar_xm_panning_slide(jar_xm_channel_context_t*, uint8_t); |
1058 |
|
|
static void jar_xm_volume_slide(jar_xm_channel_context_t*, uint8_t); |
1059 |
|
|
|
1060 |
|
|
static float jar_xm_envelope_lerp(jar_xm_envelope_point_t*, jar_xm_envelope_point_t*, uint16_t); |
1061 |
|
|
static void jar_xm_envelope_tick(jar_xm_channel_context_t*, jar_xm_envelope_t*, uint16_t*, float*); |
1062 |
|
|
static void jar_xm_envelopes(jar_xm_channel_context_t*); |
1063 |
|
|
|
1064 |
|
|
static float jar_xm_linear_period(float); |
1065 |
|
|
static float jar_xm_linear_frequency(float); |
1066 |
|
|
static float jar_xm_amiga_period(float); |
1067 |
|
|
static float jar_xm_amiga_frequency(float); |
1068 |
|
|
static float jar_xm_period(jar_xm_context_t*, float); |
1069 |
|
|
static float jar_xm_frequency(jar_xm_context_t*, float, float); |
1070 |
|
|
static void jar_xm_update_frequency(jar_xm_context_t*, jar_xm_channel_context_t*); |
1071 |
|
|
|
1072 |
|
|
static void jar_xm_handle_note_and_instrument(jar_xm_context_t*, jar_xm_channel_context_t*, jar_xm_pattern_slot_t*); |
1073 |
|
|
static void jar_xm_trigger_note(jar_xm_context_t*, jar_xm_channel_context_t*, unsigned int flags); |
1074 |
|
|
static void jar_xm_cut_note(jar_xm_channel_context_t*); |
1075 |
|
|
static void jar_xm_key_off(jar_xm_channel_context_t*); |
1076 |
|
|
|
1077 |
|
|
static void jar_xm_post_pattern_change(jar_xm_context_t*); |
1078 |
|
|
static void jar_xm_row(jar_xm_context_t*); |
1079 |
|
|
static void jar_xm_tick(jar_xm_context_t*); |
1080 |
|
|
|
1081 |
|
|
static void jar_xm_next_of_sample(jar_xm_context_t*, jar_xm_channel_context_t*, int); |
1082 |
|
|
static void jar_xm_mixdown(jar_xm_context_t*, float*, float*); |
1083 |
|
|
|
1084 |
|
|
#define jar_xm_TRIGGER_KEEP_VOLUME (1 << 0) |
1085 |
|
|
#define jar_xm_TRIGGER_KEEP_PERIOD (1 << 1) |
1086 |
|
|
#define jar_xm_TRIGGER_KEEP_SAMPLE_POSITION (1 << 2) |
1087 |
|
|
|
1088 |
|
|
// C-2, C#2, D-2, D#2, E-2, F-2, F#2, G-2, G#2, A-2, A#2, B-2, C-3 |
1089 |
|
|
static const uint16_t amiga_frequencies[] = { 1712, 1616, 1525, 1440, 1357, 1281, 1209, 1141, 1077, 1017, 961, 907, 856 }; |
1090 |
|
|
|
1091 |
|
|
// 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, b, c, d, e, f |
1092 |
|
|
static const float multi_retrig_add[] = { 0.f, -1.f, -2.f, -4.f, -8.f, -16.f, 0.f, 0.f, 0.f, 1.f, 2.f, 4.f, 8.f, 16.f, 0.f, 0.f }; |
1093 |
|
|
|
1094 |
|
|
// 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, b, c, d, e, f |
1095 |
|
|
static const float multi_retrig_multiply[] = { 1.f, 1.f, 1.f, 1.f, 1.f, 1.f, .6666667f, .5f, 1.f, 1.f, 1.f, 1.f, 1.f, 1.f, 1.5f, 2.f }; |
1096 |
|
|
|
1097 |
|
|
#define jar_xm_CLAMP_UP1F(vol, limit) do { \ |
1098 |
|
|
if((vol) > (limit)) (vol) = (limit); \ |
1099 |
|
|
} while(0) |
1100 |
|
|
#define jar_xm_CLAMP_UP(vol) jar_xm_CLAMP_UP1F((vol), 1.f) |
1101 |
|
|
|
1102 |
|
|
#define jar_xm_CLAMP_DOWN1F(vol, limit) do { \ |
1103 |
|
|
if((vol) < (limit)) (vol) = (limit); \ |
1104 |
|
|
} while(0) |
1105 |
|
|
#define jar_xm_CLAMP_DOWN(vol) jar_xm_CLAMP_DOWN1F((vol), .0f) |
1106 |
|
|
|
1107 |
|
|
#define jar_xm_CLAMP2F(vol, up, down) do { \ |
1108 |
|
|
if((vol) > (up)) (vol) = (up); \ |
1109 |
|
|
else if((vol) < (down)) (vol) = (down); \ |
1110 |
|
|
} while(0) |
1111 |
|
|
#define jar_xm_CLAMP(vol) jar_xm_CLAMP2F((vol), 1.f, .0f) |
1112 |
|
|
|
1113 |
|
|
#define jar_xm_SLIDE_TOWARDS(val, goal, incr) do { \ |
1114 |
|
|
if((val) > (goal)) { \ |
1115 |
|
|
(val) -= (incr); \ |
1116 |
|
|
jar_xm_CLAMP_DOWN1F((val), (goal)); \ |
1117 |
|
|
} else if((val) < (goal)) { \ |
1118 |
|
|
(val) += (incr); \ |
1119 |
|
|
jar_xm_CLAMP_UP1F((val), (goal)); \ |
1120 |
|
|
} \ |
1121 |
|
|
} while(0) |
1122 |
|
|
|
1123 |
|
|
#define jar_xm_LERP(u, v, t) ((u) + (t) * ((v) - (u))) |
1124 |
|
|
#define jar_xm_INVERSE_LERP(u, v, lerp) (((lerp) - (u)) / ((v) - (u))) |
1125 |
|
|
|
1126 |
|
|
#define HAS_TONE_PORTAMENTO(s) ((s)->effect_type == 3 \ |
1127 |
|
|
|| (s)->effect_type == 5 \ |
1128 |
|
|
|| ((s)->volume_column >> 4) == 0xF) |
1129 |
|
|
#define HAS_ARPEGGIO(s) ((s)->effect_type == 0 \ |
1130 |
|
|
&& (s)->effect_param != 0) |
1131 |
|
|
#define HAS_VIBRATO(s) ((s)->effect_type == 4 \ |
1132 |
|
|
|| (s)->effect_param == 6 \ |
1133 |
|
|
|| ((s)->volume_column >> 4) == 0xB) |
1134 |
|
|
#define NOTE_IS_VALID(n) ((n) > 0 && (n) < 97) |
1135 |
|
|
#define NOTE_OFF 97 |
1136 |
|
|
|
1137 |
|
✗ |
static float jar_xm_waveform(jar_xm_waveform_type_t waveform, uint8_t step) { |
1138 |
|
|
static unsigned int next_rand = 24492; |
1139 |
|
✗ |
step %= 0x40; |
1140 |
|
✗ |
switch(waveform) { |
1141 |
|
✗ |
case jar_xm_SINE_WAVEFORM: /* No SIN() table used, direct calculation. */ |
1142 |
|
✗ |
return -sinf(2.f * 3.141592f * (float)step / (float)0x40); |
1143 |
|
✗ |
case jar_xm_RAMP_DOWN_WAVEFORM: /* Ramp down: 1.0f when step = 0; -1.0f when step = 0x40 */ |
1144 |
|
✗ |
return (float)(0x20 - step) / 0x20; |
1145 |
|
✗ |
case jar_xm_SQUARE_WAVEFORM: /* Square with a 50% duty */ |
1146 |
|
✗ |
return (step >= 0x20) ? 1.f : -1.f; |
1147 |
|
✗ |
case jar_xm_RANDOM_WAVEFORM: /* Use the POSIX.1-2001 example, just to be deterministic across different machines */ |
1148 |
|
✗ |
next_rand = next_rand * 1103515245 + 12345; |
1149 |
|
✗ |
return (float)((next_rand >> 16) & 0x7FFF) / (float)0x4000 - 1.f; |
1150 |
|
✗ |
case jar_xm_RAMP_UP_WAVEFORM: /* Ramp up: -1.f when step = 0; 1.f when step = 0x40 */ |
1151 |
|
✗ |
return (float)(step - 0x20) / 0x20; |
1152 |
|
|
default: |
1153 |
|
|
break; |
1154 |
|
|
} |
1155 |
|
|
return .0f; |
1156 |
|
|
} |
1157 |
|
|
|
1158 |
|
✗ |
static void jar_xm_autovibrato(jar_xm_context_t* ctx, jar_xm_channel_context_t* ch) { |
1159 |
|
✗ |
if(ch->instrument == NULL || ch->instrument->vibrato_depth == 0) return; |
1160 |
|
|
jar_xm_instrument_t* instr = ch->instrument; |
1161 |
|
|
float sweep = 1.f; |
1162 |
|
✗ |
if(ch->autovibrato_ticks < instr->vibrato_sweep) { sweep = jar_xm_LERP(0.f, 1.f, (float)ch->autovibrato_ticks / (float)instr->vibrato_sweep); } |
1163 |
|
✗ |
unsigned int step = ((ch->autovibrato_ticks++) * instr->vibrato_rate) >> 2; |
1164 |
|
✗ |
ch->autovibrato_note_offset = .25f * jar_xm_waveform(instr->vibrato_type, step) * (float)instr->vibrato_depth / (float)0xF * sweep; |
1165 |
|
✗ |
jar_xm_update_frequency(ctx, ch); |
1166 |
|
|
} |
1167 |
|
|
|
1168 |
|
✗ |
static void jar_xm_vibrato(jar_xm_context_t* ctx, jar_xm_channel_context_t* ch, uint8_t param, uint16_t pos) { |
1169 |
|
✗ |
unsigned int step = pos * (param >> 4); |
1170 |
|
✗ |
ch->vibrato_note_offset = 2.f * jar_xm_waveform(ch->vibrato_waveform, step) * (float)(param & 0x0F) / (float)0xF; |
1171 |
|
✗ |
jar_xm_update_frequency(ctx, ch); |
1172 |
|
|
} |
1173 |
|
|
|
1174 |
|
✗ |
static void jar_xm_tremolo(jar_xm_context_t* ctx, jar_xm_channel_context_t* ch, uint8_t param, uint16_t pos) { |
1175 |
|
✗ |
unsigned int step = pos * (param >> 4); |
1176 |
|
✗ |
ch->tremolo_volume = -1.f * jar_xm_waveform(ch->tremolo_waveform, step) * (float)(param & 0x0F) / (float)0xF; |
1177 |
|
|
} |
1178 |
|
|
|
1179 |
|
✗ |
static void jar_xm_arpeggio(jar_xm_context_t* ctx, jar_xm_channel_context_t* ch, uint8_t param, uint16_t tick) { |
1180 |
|
✗ |
switch(tick % 3) { |
1181 |
|
✗ |
case 0: |
1182 |
|
✗ |
ch->arp_in_progress = false; |
1183 |
|
✗ |
ch->arp_note_offset = 0; |
1184 |
|
✗ |
break; |
1185 |
|
✗ |
case 2: |
1186 |
|
✗ |
ch->arp_in_progress = true; |
1187 |
|
✗ |
ch->arp_note_offset = param >> 4; |
1188 |
|
✗ |
break; |
1189 |
|
✗ |
case 1: |
1190 |
|
✗ |
ch->arp_in_progress = true; |
1191 |
|
✗ |
ch->arp_note_offset = param & 0x0F; |
1192 |
|
✗ |
break; |
1193 |
|
|
} |
1194 |
|
✗ |
jar_xm_update_frequency(ctx, ch); |
1195 |
|
|
} |
1196 |
|
|
|
1197 |
|
✗ |
static void jar_xm_tone_portamento(jar_xm_context_t* ctx, jar_xm_channel_context_t* ch) { |
1198 |
|
|
/* 3xx called without a note, wait until we get an actual target note. */ |
1199 |
|
✗ |
if(ch->tone_portamento_target_period == 0.f) return; /* no value, exit */ |
1200 |
|
✗ |
if(ch->period != ch->tone_portamento_target_period) { |
1201 |
|
✗ |
jar_xm_SLIDE_TOWARDS(ch->period, ch->tone_portamento_target_period, (ctx->module.frequency_type == jar_xm_LINEAR_FREQUENCIES ? 4.f : 1.f) * ch->tone_portamento_param); |
1202 |
|
✗ |
jar_xm_update_frequency(ctx, ch); |
1203 |
|
|
} |
1204 |
|
|
} |
1205 |
|
|
|
1206 |
|
|
static void jar_xm_pitch_slide(jar_xm_context_t* ctx, jar_xm_channel_context_t* ch, float period_offset) { |
1207 |
|
|
/* Don't ask about the 4.f coefficient. I found mention of it nowhere. Found by earâ„¢. */ |
1208 |
|
✗ |
if(ctx->module.frequency_type == jar_xm_LINEAR_FREQUENCIES) {period_offset *= 4.f; } |
1209 |
|
✗ |
ch->period += period_offset; |
1210 |
|
✗ |
jar_xm_CLAMP_DOWN(ch->period); |
1211 |
|
|
/* XXX: upper bound of period ? */ |
1212 |
|
✗ |
jar_xm_update_frequency(ctx, ch); |
1213 |
|
|
} |
1214 |
|
|
|
1215 |
|
|
static void jar_xm_panning_slide(jar_xm_channel_context_t* ch, uint8_t rawval) { |
1216 |
|
✗ |
if (rawval & 0xF0) {ch->panning += (float)((rawval & 0xF0 )>> 4) / (float)0xFF;}; |
1217 |
|
✗ |
if (rawval & 0x0F) {ch->panning -= (float)(rawval & 0x0F) / (float)0xFF;}; |
1218 |
|
|
}; |
1219 |
|
|
|
1220 |
|
|
static void jar_xm_volume_slide(jar_xm_channel_context_t* ch, uint8_t rawval) { |
1221 |
|
✗ |
if (rawval & 0xF0) {ch->volume += (float)((rawval & 0xF0) >> 4) / (float)0x40;}; |
1222 |
|
✗ |
if (rawval & 0x0F) {ch->volume -= (float)(rawval & 0x0F) / (float)0x40;}; |
1223 |
|
|
}; |
1224 |
|
|
|
1225 |
|
✗ |
static float jar_xm_envelope_lerp(jar_xm_envelope_point_t* a, jar_xm_envelope_point_t* b, uint16_t pos) { |
1226 |
|
|
/* Linear interpolation between two envelope points */ |
1227 |
|
✗ |
if(pos <= a->frame) return a->value; |
1228 |
|
✗ |
else if(pos >= b->frame) return b->value; |
1229 |
|
|
else { |
1230 |
|
✗ |
float p = (float)(pos - a->frame) / (float)(b->frame - a->frame); |
1231 |
|
✗ |
return a->value * (1 - p) + b->value * p; |
1232 |
|
|
} |
1233 |
|
|
} |
1234 |
|
|
|
1235 |
|
|
static void jar_xm_post_pattern_change(jar_xm_context_t* ctx) { |
1236 |
|
|
/* Loop if necessary */ |
1237 |
|
✗ |
if(ctx->current_table_index >= ctx->module.length) { |
1238 |
|
✗ |
ctx->current_table_index = ctx->module.restart_position; |
1239 |
|
✗ |
ctx->tempo =ctx->default_tempo; // reset to file default value |
1240 |
|
✗ |
ctx->bpm = ctx->default_bpm; // reset to file default value |
1241 |
|
✗ |
ctx->global_volume = ctx->default_global_volume; // reset to file default value |
1242 |
|
|
} |
1243 |
|
|
} |
1244 |
|
|
|
1245 |
|
|
static float jar_xm_linear_period(float note) { |
1246 |
|
✗ |
return 7680.f - note * 64.f; |
1247 |
|
|
} |
1248 |
|
|
|
1249 |
|
|
static float jar_xm_linear_frequency(float period) { |
1250 |
|
✗ |
return 8363.f * powf(2.f, (4608.f - period) / 768.f); |
1251 |
|
|
} |
1252 |
|
|
|
1253 |
|
✗ |
static float jar_xm_amiga_period(float note) { |
1254 |
|
✗ |
unsigned int intnote = note; |
1255 |
|
✗ |
uint8_t a = intnote % 12; |
1256 |
|
✗ |
int8_t octave = note / 12.f - 2; |
1257 |
|
✗ |
uint16_t p1 = amiga_frequencies[a], p2 = amiga_frequencies[a + 1]; |
1258 |
|
✗ |
if(octave > 0) { |
1259 |
|
✗ |
p1 >>= octave; |
1260 |
|
✗ |
p2 >>= octave; |
1261 |
|
✗ |
} else if(octave < 0) { |
1262 |
|
✗ |
p1 <<= -octave; |
1263 |
|
✗ |
p2 <<= -octave; |
1264 |
|
|
} |
1265 |
|
✗ |
return jar_xm_LERP(p1, p2, note - intnote); |
1266 |
|
|
} |
1267 |
|
|
|
1268 |
|
|
static float jar_xm_amiga_frequency(float period) { |
1269 |
|
✗ |
if(period == .0f) return .0f; |
1270 |
|
✗ |
return 7093789.2f / (period * 2.f); /* This is the PAL value. (we could use the NTSC value also) */ |
1271 |
|
|
} |
1272 |
|
|
|
1273 |
|
✗ |
static float jar_xm_period(jar_xm_context_t* ctx, float note) { |
1274 |
|
✗ |
switch(ctx->module.frequency_type) { |
1275 |
|
|
case jar_xm_LINEAR_FREQUENCIES: |
1276 |
|
✗ |
return jar_xm_linear_period(note); |
1277 |
|
✗ |
case jar_xm_AMIGA_FREQUENCIES: |
1278 |
|
✗ |
return jar_xm_amiga_period(note); |
1279 |
|
|
} |
1280 |
|
|
return .0f; |
1281 |
|
|
} |
1282 |
|
|
|
1283 |
|
✗ |
static float jar_xm_frequency(jar_xm_context_t* ctx, float period, float note_offset) { |
1284 |
|
✗ |
switch(ctx->module.frequency_type) { |
1285 |
|
✗ |
case jar_xm_LINEAR_FREQUENCIES: |
1286 |
|
✗ |
return jar_xm_linear_frequency(period - 64.f * note_offset); |
1287 |
|
✗ |
case jar_xm_AMIGA_FREQUENCIES: |
1288 |
|
✗ |
if(note_offset == 0) { return jar_xm_amiga_frequency(period); }; |
1289 |
|
|
int8_t octave; |
1290 |
|
|
float note; |
1291 |
|
|
uint16_t p1, p2; |
1292 |
|
|
uint8_t a = octave = 0; |
1293 |
|
|
|
1294 |
|
|
/* Find the octave of the current period */ |
1295 |
|
✗ |
if(period > amiga_frequencies[0]) { |
1296 |
|
|
--octave; |
1297 |
|
✗ |
while(period > (amiga_frequencies[0] << -octave)) --octave; |
1298 |
|
✗ |
} else if(period < amiga_frequencies[12]) { |
1299 |
|
|
++octave; |
1300 |
|
✗ |
while(period < (amiga_frequencies[12] >> octave)) ++octave; |
1301 |
|
|
} |
1302 |
|
|
|
1303 |
|
|
/* Find the smallest note closest to the current period */ |
1304 |
|
✗ |
for(uint8_t i = 0; i < 12; ++i) { |
1305 |
|
✗ |
p1 = amiga_frequencies[i], p2 = amiga_frequencies[i + 1]; |
1306 |
|
✗ |
if(octave > 0) { |
1307 |
|
✗ |
p1 >>= octave; |
1308 |
|
✗ |
p2 >>= octave; |
1309 |
|
✗ |
} else if(octave < 0) { |
1310 |
|
✗ |
p1 <<= (-octave); |
1311 |
|
✗ |
p2 <<= (-octave); |
1312 |
|
|
} |
1313 |
|
✗ |
if(p2 <= period && period <= p1) { |
1314 |
|
|
a = i; |
1315 |
|
|
break; |
1316 |
|
|
} |
1317 |
|
|
} |
1318 |
|
|
if(JAR_XM_DEBUG && (p1 < period || p2 > period)) { DEBUG("%i <= %f <= %i should hold but doesn't, this is a bug", p2, period, p1); } |
1319 |
|
✗ |
note = 12.f * (octave + 2) + a + jar_xm_INVERSE_LERP(p1, p2, period); |
1320 |
|
✗ |
return jar_xm_amiga_frequency(jar_xm_amiga_period(note + note_offset)); |
1321 |
|
|
} |
1322 |
|
|
|
1323 |
|
|
return .0f; |
1324 |
|
|
} |
1325 |
|
|
|
1326 |
|
✗ |
static void jar_xm_update_frequency(jar_xm_context_t* ctx, jar_xm_channel_context_t* ch) { |
1327 |
|
✗ |
ch->frequency = jar_xm_frequency( ctx, ch->period, (ch->arp_note_offset > 0 ? ch->arp_note_offset : ( ch->vibrato_note_offset + ch->autovibrato_note_offset )) ); |
1328 |
|
✗ |
ch->step = ch->frequency / ctx->rate; |
1329 |
|
|
} |
1330 |
|
|
|
1331 |
|
✗ |
static void jar_xm_handle_note_and_instrument(jar_xm_context_t* ctx, jar_xm_channel_context_t* ch, jar_xm_pattern_slot_t* s) { |
1332 |
|
|
jar_xm_module_t* mod = &(ctx->module); |
1333 |
|
✗ |
if(s->instrument > 0) { |
1334 |
|
✗ |
if(HAS_TONE_PORTAMENTO(ch->current) && ch->instrument != NULL && ch->sample != NULL) { /* Tone portamento in effect */ |
1335 |
|
✗ |
jar_xm_trigger_note(ctx, ch, jar_xm_TRIGGER_KEEP_PERIOD | jar_xm_TRIGGER_KEEP_SAMPLE_POSITION); |
1336 |
|
✗ |
} else if(s->instrument > ctx->module.num_instruments) { /* Invalid instrument, Cut current note */ |
1337 |
|
|
jar_xm_cut_note(ch); |
1338 |
|
✗ |
ch->instrument = NULL; |
1339 |
|
✗ |
ch->sample = NULL; |
1340 |
|
|
} else { |
1341 |
|
✗ |
ch->instrument = ctx->module.instruments + (s->instrument - 1); |
1342 |
|
✗ |
if(s->note == 0 && ch->sample != NULL) { /* Ghost instrument, trigger note */ |
1343 |
|
|
/* Sample position is kept, but envelopes are reset */ |
1344 |
|
✗ |
jar_xm_trigger_note(ctx, ch, jar_xm_TRIGGER_KEEP_SAMPLE_POSITION); |
1345 |
|
|
} |
1346 |
|
|
} |
1347 |
|
|
} |
1348 |
|
|
|
1349 |
|
✗ |
if(NOTE_IS_VALID(s->note)) { |
1350 |
|
|
// note value is s->note -1 |
1351 |
|
✗ |
jar_xm_instrument_t* instr = ch->instrument; |
1352 |
|
✗ |
if(HAS_TONE_PORTAMENTO(ch->current) && instr != NULL && ch->sample != NULL) { |
1353 |
|
|
/* Tone portamento in effect */ |
1354 |
|
✗ |
ch->note = s->note + ch->sample->relative_note + ch->sample->finetune / 128.f - 1.f; |
1355 |
|
✗ |
ch->tone_portamento_target_period = jar_xm_period(ctx, ch->note); |
1356 |
|
✗ |
} else if(instr == NULL || ch->instrument->num_samples == 0) { /* Issue on instrument */ |
1357 |
|
|
jar_xm_cut_note(ch); |
1358 |
|
|
} else { |
1359 |
|
✗ |
if(instr->sample_of_notes[s->note - 1] < instr->num_samples) { |
1360 |
|
✗ |
if (mod->ramping) { |
1361 |
|
✗ |
for(int i = 0; i < jar_xm_SAMPLE_RAMPING_POINTS; ++i) { |
1362 |
|
✗ |
jar_xm_next_of_sample(ctx, ch, i); |
1363 |
|
|
} |
1364 |
|
✗ |
ch->frame_count = 0; |
1365 |
|
|
}; |
1366 |
|
✗ |
ch->sample = instr->samples + instr->sample_of_notes[s->note - 1]; |
1367 |
|
✗ |
ch->orig_note = ch->note = s->note + ch->sample->relative_note + ch->sample->finetune / 128.f - 1.f; |
1368 |
|
✗ |
if(s->instrument > 0) { |
1369 |
|
✗ |
jar_xm_trigger_note(ctx, ch, 0); |
1370 |
|
|
} else { /* Ghost note: keep old volume */ |
1371 |
|
✗ |
jar_xm_trigger_note(ctx, ch, jar_xm_TRIGGER_KEEP_VOLUME); |
1372 |
|
|
} |
1373 |
|
|
} else { |
1374 |
|
|
jar_xm_cut_note(ch); |
1375 |
|
|
} |
1376 |
|
|
} |
1377 |
|
✗ |
} else if(s->note == NOTE_OFF) { |
1378 |
|
|
jar_xm_key_off(ch); |
1379 |
|
|
} |
1380 |
|
|
|
1381 |
|
|
// Interpret Effect column |
1382 |
|
✗ |
switch(s->effect_type) { |
1383 |
|
✗ |
case 1: /* 1xx: Portamento up */ |
1384 |
|
✗ |
if(s->effect_param > 0) { ch->portamento_up_param = s->effect_param; } |
1385 |
|
|
break; |
1386 |
|
✗ |
case 2: /* 2xx: Portamento down */ |
1387 |
|
✗ |
if(s->effect_param > 0) { ch->portamento_down_param = s->effect_param; } |
1388 |
|
|
break; |
1389 |
|
✗ |
case 3: /* 3xx: Tone portamento */ |
1390 |
|
✗ |
if(s->effect_param > 0) { ch->tone_portamento_param = s->effect_param; } |
1391 |
|
|
break; |
1392 |
|
✗ |
case 4: /* 4xy: Vibrato */ |
1393 |
|
✗ |
if(s->effect_param & 0x0F) { ch->vibrato_param = (ch->vibrato_param & 0xF0) | (s->effect_param & 0x0F); } /* Set vibrato depth */ |
1394 |
|
✗ |
if(s->effect_param >> 4) { ch->vibrato_param = (s->effect_param & 0xF0) | (ch->vibrato_param & 0x0F); } /* Set vibrato speed */ |
1395 |
|
|
break; |
1396 |
|
✗ |
case 5: /* 5xy: Tone portamento + Volume slide */ |
1397 |
|
✗ |
if(s->effect_param > 0) { ch->volume_slide_param = s->effect_param; } |
1398 |
|
|
break; |
1399 |
|
✗ |
case 6: /* 6xy: Vibrato + Volume slide */ |
1400 |
|
✗ |
if(s->effect_param > 0) { ch->volume_slide_param = s->effect_param; } |
1401 |
|
|
break; |
1402 |
|
✗ |
case 7: /* 7xy: Tremolo */ |
1403 |
|
✗ |
if(s->effect_param & 0x0F) { ch->tremolo_param = (ch->tremolo_param & 0xF0) | (s->effect_param & 0x0F); } /* Set tremolo depth */ |
1404 |
|
✗ |
if(s->effect_param >> 4) { ch->tremolo_param = (s->effect_param & 0xF0) | (ch->tremolo_param & 0x0F); } /* Set tremolo speed */ |
1405 |
|
|
break; |
1406 |
|
✗ |
case 8: /* 8xx: Set panning */ |
1407 |
|
✗ |
ch->panning = (float)s->effect_param / 255.f; |
1408 |
|
✗ |
break; |
1409 |
|
✗ |
case 9: /* 9xx: Sample offset */ |
1410 |
|
✗ |
if(ch->sample != 0) { //&& NOTE_IS_VALID(s->note)) { |
1411 |
|
✗ |
uint32_t final_offset = s->effect_param << (ch->sample->bits == 16 ? 7 : 8); |
1412 |
|
✗ |
switch (ch->sample->loop_type) { |
1413 |
|
✗ |
case jar_xm_NO_LOOP: |
1414 |
|
✗ |
if(final_offset >= ch->sample->length) { /* Pretend the sample dosen't loop and is done playing */ |
1415 |
|
✗ |
ch->sample_position = -1; |
1416 |
|
|
} else { |
1417 |
|
✗ |
ch->sample_position = final_offset; |
1418 |
|
|
} |
1419 |
|
|
break; |
1420 |
|
✗ |
case jar_xm_FORWARD_LOOP: |
1421 |
|
✗ |
if (final_offset >= ch->sample->loop_end) { |
1422 |
|
✗ |
ch->sample_position -= ch->sample->loop_length; |
1423 |
|
✗ |
} else if(final_offset >= ch->sample->length) { |
1424 |
|
✗ |
ch->sample_position = ch->sample->loop_start; |
1425 |
|
|
} else { |
1426 |
|
✗ |
ch->sample_position = final_offset; |
1427 |
|
|
} |
1428 |
|
|
break; |
1429 |
|
✗ |
case jar_xm_PING_PONG_LOOP: |
1430 |
|
✗ |
if(final_offset >= ch->sample->loop_end) { |
1431 |
|
✗ |
ch->ping = false; |
1432 |
|
✗ |
ch->sample_position = (ch->sample->loop_end << 1) - ch->sample_position; |
1433 |
|
✗ |
} else if(final_offset >= ch->sample->length) { |
1434 |
|
✗ |
ch->ping = false; |
1435 |
|
✗ |
ch->sample_position -= ch->sample->length - 1; |
1436 |
|
|
} else { |
1437 |
|
✗ |
ch->sample_position = final_offset; |
1438 |
|
|
}; |
1439 |
|
|
break; |
1440 |
|
|
} |
1441 |
|
|
} |
1442 |
|
|
break; |
1443 |
|
✗ |
case 0xA: /* Axy: Volume slide */ |
1444 |
|
✗ |
if(s->effect_param > 0) { ch->volume_slide_param = s->effect_param; } |
1445 |
|
|
break; |
1446 |
|
✗ |
case 0xB: /* Bxx: Position jump */ |
1447 |
|
✗ |
if(s->effect_param < ctx->module.length) { |
1448 |
|
✗ |
ctx->position_jump = true; |
1449 |
|
✗ |
ctx->jump_dest = s->effect_param; |
1450 |
|
|
} |
1451 |
|
|
break; |
1452 |
|
✗ |
case 0xC: /* Cxx: Set volume */ |
1453 |
|
✗ |
ch->volume = (float)((s->effect_param > 0x40) ? 0x40 : s->effect_param) / (float)0x40; |
1454 |
|
✗ |
break; |
1455 |
|
✗ |
case 0xD: /* Dxx: Pattern break */ |
1456 |
|
|
/* Jump after playing this line */ |
1457 |
|
✗ |
ctx->pattern_break = true; |
1458 |
|
✗ |
ctx->jump_row = (s->effect_param >> 4) * 10 + (s->effect_param & 0x0F); |
1459 |
|
✗ |
break; |
1460 |
|
✗ |
case 0xE: /* EXy: Extended command */ |
1461 |
|
✗ |
switch(s->effect_param >> 4) { |
1462 |
|
✗ |
case 1: /* E1y: Fine portamento up */ |
1463 |
|
✗ |
if(s->effect_param & 0x0F) { ch->fine_portamento_up_param = s->effect_param & 0x0F; } |
1464 |
|
✗ |
jar_xm_pitch_slide(ctx, ch, -ch->fine_portamento_up_param); |
1465 |
|
|
break; |
1466 |
|
✗ |
case 2: /* E2y: Fine portamento down */ |
1467 |
|
✗ |
if(s->effect_param & 0x0F) { ch->fine_portamento_down_param = s->effect_param & 0x0F; } |
1468 |
|
✗ |
jar_xm_pitch_slide(ctx, ch, ch->fine_portamento_down_param); |
1469 |
|
|
break; |
1470 |
|
✗ |
case 4: /* E4y: Set vibrato control */ |
1471 |
|
✗ |
ch->vibrato_waveform = s->effect_param & 3; |
1472 |
|
✗ |
ch->vibrato_waveform_retrigger = !((s->effect_param >> 2) & 1); |
1473 |
|
✗ |
break; |
1474 |
|
✗ |
case 5: /* E5y: Set finetune */ |
1475 |
|
✗ |
if(NOTE_IS_VALID(ch->current->note) && ch->sample != NULL) { |
1476 |
|
✗ |
ch->note = ch->current->note + ch->sample->relative_note + (float)(((s->effect_param & 0x0F) - 8) << 4) / 128.f - 1.f; |
1477 |
|
✗ |
ch->period = jar_xm_period(ctx, ch->note); |
1478 |
|
✗ |
jar_xm_update_frequency(ctx, ch); |
1479 |
|
|
} |
1480 |
|
|
break; |
1481 |
|
✗ |
case 6: /* E6y: Pattern loop */ |
1482 |
|
✗ |
if(s->effect_param & 0x0F) { |
1483 |
|
✗ |
if((s->effect_param & 0x0F) == ch->pattern_loop_count) { /* Loop is over */ |
1484 |
|
✗ |
ch->pattern_loop_count = 0; |
1485 |
|
✗ |
ctx->position_jump = false; |
1486 |
|
|
} else { /* Jump to the beginning of the loop */ |
1487 |
|
✗ |
ch->pattern_loop_count++; |
1488 |
|
✗ |
ctx->position_jump = true; |
1489 |
|
✗ |
ctx->jump_row = ch->pattern_loop_origin; |
1490 |
|
✗ |
ctx->jump_dest = ctx->current_table_index; |
1491 |
|
|
} |
1492 |
|
|
} else { |
1493 |
|
✗ |
ch->pattern_loop_origin = ctx->current_row; /* Set loop start point */ |
1494 |
|
✗ |
ctx->jump_row = ch->pattern_loop_origin; /* Replicate FT2 E60 bug */ |
1495 |
|
|
} |
1496 |
|
|
break; |
1497 |
|
✗ |
case 7: /* E7y: Set tremolo control */ |
1498 |
|
✗ |
ch->tremolo_waveform = s->effect_param & 3; |
1499 |
|
✗ |
ch->tremolo_waveform_retrigger = !((s->effect_param >> 2) & 1); |
1500 |
|
✗ |
break; |
1501 |
|
✗ |
case 0xA: /* EAy: Fine volume slide up */ |
1502 |
|
✗ |
if(s->effect_param & 0x0F) { ch->fine_volume_slide_param = s->effect_param & 0x0F; } |
1503 |
|
✗ |
jar_xm_volume_slide(ch, ch->fine_volume_slide_param << 4); |
1504 |
|
|
break; |
1505 |
|
✗ |
case 0xB: /* EBy: Fine volume slide down */ |
1506 |
|
✗ |
if(s->effect_param & 0x0F) { ch->fine_volume_slide_param = s->effect_param & 0x0F; } |
1507 |
|
✗ |
jar_xm_volume_slide(ch, ch->fine_volume_slide_param); |
1508 |
|
|
break; |
1509 |
|
✗ |
case 0xD: /* EDy: Note delay */ |
1510 |
|
|
/* XXX: figure this out better. EDx triggers the note even when there no note and no instrument. But ED0 acts like like a ghost note, EDx (x ≠0) does not. */ |
1511 |
|
✗ |
if(s->note == 0 && s->instrument == 0) { |
1512 |
|
|
unsigned int flags = jar_xm_TRIGGER_KEEP_VOLUME; |
1513 |
|
✗ |
if(ch->current->effect_param & 0x0F) { |
1514 |
|
✗ |
ch->note = ch->orig_note; |
1515 |
|
✗ |
jar_xm_trigger_note(ctx, ch, flags); |
1516 |
|
|
} else { |
1517 |
|
✗ |
jar_xm_trigger_note(ctx, ch, flags | jar_xm_TRIGGER_KEEP_PERIOD | jar_xm_TRIGGER_KEEP_SAMPLE_POSITION ); |
1518 |
|
|
} |
1519 |
|
|
} |
1520 |
|
|
break; |
1521 |
|
|
|
1522 |
|
✗ |
case 0xE: /* EEy: Pattern delay */ |
1523 |
|
✗ |
ctx->extra_ticks = (ch->current->effect_param & 0x0F) * ctx->tempo; |
1524 |
|
✗ |
break; |
1525 |
|
|
default: |
1526 |
|
|
break; |
1527 |
|
|
} |
1528 |
|
|
break; |
1529 |
|
|
|
1530 |
|
✗ |
case 0xF: /* Fxx: Set tempo/BPM */ |
1531 |
|
✗ |
if(s->effect_param > 0) { |
1532 |
|
✗ |
if(s->effect_param <= 0x1F) { // First 32 possible values adjust the ticks (goes into tempo) |
1533 |
|
✗ |
ctx->tempo = s->effect_param; |
1534 |
|
|
} else { //32 and greater values adjust the BPM |
1535 |
|
✗ |
ctx->bpm = s->effect_param; |
1536 |
|
|
} |
1537 |
|
|
} |
1538 |
|
|
break; |
1539 |
|
|
|
1540 |
|
✗ |
case 16: /* Gxx: Set global volume */ |
1541 |
|
✗ |
ctx->global_volume = (float)((s->effect_param > 0x40) ? 0x40 : s->effect_param) / (float)0x40; |
1542 |
|
✗ |
break; |
1543 |
|
✗ |
case 17: /* Hxy: Global volume slide */ |
1544 |
|
✗ |
if(s->effect_param > 0) { ch->global_volume_slide_param = s->effect_param; } |
1545 |
|
|
break; |
1546 |
|
✗ |
case 21: /* Lxx: Set envelope position */ |
1547 |
|
✗ |
ch->volume_envelope_frame_count = s->effect_param; |
1548 |
|
✗ |
ch->panning_envelope_frame_count = s->effect_param; |
1549 |
|
✗ |
break; |
1550 |
|
✗ |
case 25: /* Pxy: Panning slide */ |
1551 |
|
✗ |
if(s->effect_param > 0) { ch->panning_slide_param = s->effect_param; } |
1552 |
|
|
break; |
1553 |
|
✗ |
case 27: /* Rxy: Multi retrig note */ |
1554 |
|
✗ |
if(s->effect_param > 0) { |
1555 |
|
✗ |
if((s->effect_param >> 4) == 0) { /* Keep previous x value */ |
1556 |
|
✗ |
ch->multi_retrig_param = (ch->multi_retrig_param & 0xF0) | (s->effect_param & 0x0F); |
1557 |
|
|
} else { |
1558 |
|
✗ |
ch->multi_retrig_param = s->effect_param; |
1559 |
|
|
} |
1560 |
|
|
} |
1561 |
|
|
break; |
1562 |
|
✗ |
case 29: /* Txy: Tremor */ |
1563 |
|
✗ |
if(s->effect_param > 0) { ch->tremor_param = s->effect_param; } /* Tremor x and y params are not separately kept in memory, unlike Rxy */ |
1564 |
|
|
break; |
1565 |
|
✗ |
case 33: /* Xxy: Extra stuff */ |
1566 |
|
✗ |
switch(s->effect_param >> 4) { |
1567 |
|
✗ |
case 1: /* X1y: Extra fine portamento up */ |
1568 |
|
✗ |
if(s->effect_param & 0x0F) { ch->extra_fine_portamento_up_param = s->effect_param & 0x0F; } |
1569 |
|
✗ |
jar_xm_pitch_slide(ctx, ch, -1.0f * ch->extra_fine_portamento_up_param); |
1570 |
|
|
break; |
1571 |
|
✗ |
case 2: /* X2y: Extra fine portamento down */ |
1572 |
|
✗ |
if(s->effect_param & 0x0F) { ch->extra_fine_portamento_down_param = s->effect_param & 0x0F; } |
1573 |
|
✗ |
jar_xm_pitch_slide(ctx, ch, ch->extra_fine_portamento_down_param); |
1574 |
|
|
break; |
1575 |
|
|
default: |
1576 |
|
|
break; |
1577 |
|
|
} |
1578 |
|
|
break; |
1579 |
|
|
default: |
1580 |
|
|
break; |
1581 |
|
|
} |
1582 |
|
|
} |
1583 |
|
|
|
1584 |
|
✗ |
static void jar_xm_trigger_note(jar_xm_context_t* ctx, jar_xm_channel_context_t* ch, unsigned int flags) { |
1585 |
|
✗ |
if (!(flags & jar_xm_TRIGGER_KEEP_SAMPLE_POSITION)) { |
1586 |
|
✗ |
ch->sample_position = 0.f; |
1587 |
|
✗ |
ch->ping = true; |
1588 |
|
|
}; |
1589 |
|
|
|
1590 |
|
✗ |
if (!(flags & jar_xm_TRIGGER_KEEP_VOLUME)) { |
1591 |
|
✗ |
if(ch->sample != NULL) { |
1592 |
|
✗ |
ch->volume = ch->sample->volume; |
1593 |
|
|
}; |
1594 |
|
|
}; |
1595 |
|
✗ |
ch->panning = ch->sample->panning; |
1596 |
|
✗ |
ch->sustained = true; |
1597 |
|
✗ |
ch->fadeout_volume = ch->volume_envelope_volume = 1.0f; |
1598 |
|
✗ |
ch->panning_envelope_panning = .5f; |
1599 |
|
✗ |
ch->volume_envelope_frame_count = ch->panning_envelope_frame_count = 0; |
1600 |
|
✗ |
ch->vibrato_note_offset = 0.f; |
1601 |
|
✗ |
ch->tremolo_volume = 0.f; |
1602 |
|
✗ |
ch->tremor_on = false; |
1603 |
|
✗ |
ch->autovibrato_ticks = 0; |
1604 |
|
|
|
1605 |
|
✗ |
if(ch->vibrato_waveform_retrigger) { ch->vibrato_ticks = 0; } /* XXX: should the waveform itself also be reset to sine? */ |
1606 |
|
✗ |
if(ch->tremolo_waveform_retrigger) { ch->tremolo_ticks = 0; } |
1607 |
|
✗ |
if(!(flags & jar_xm_TRIGGER_KEEP_PERIOD)) { |
1608 |
|
✗ |
ch->period = jar_xm_period(ctx, ch->note); |
1609 |
|
✗ |
jar_xm_update_frequency(ctx, ch); |
1610 |
|
|
} |
1611 |
|
✗ |
ch->latest_trigger = ctx->generated_samples; |
1612 |
|
✗ |
if(ch->instrument != NULL) { ch->instrument->latest_trigger = ctx->generated_samples; } |
1613 |
|
✗ |
if(ch->sample != NULL) { ch->sample->latest_trigger = ctx->generated_samples; } |
1614 |
|
|
} |
1615 |
|
|
|
1616 |
|
|
static void jar_xm_cut_note(jar_xm_channel_context_t* ch) { |
1617 |
|
✗ |
ch->volume = .0f; /* NB: this is not the same as Key Off */ |
1618 |
|
|
// ch->curr_left = .0f; |
1619 |
|
|
// ch->curr_right = .0f; |
1620 |
|
|
} |
1621 |
|
|
|
1622 |
|
|
static void jar_xm_key_off(jar_xm_channel_context_t* ch) { |
1623 |
|
✗ |
ch->sustained = false; /* Key Off */ |
1624 |
|
✗ |
if(ch->instrument == NULL || !ch->instrument->volume_envelope.enabled) { jar_xm_cut_note(ch); } /* If no volume envelope is used, also cut the note */ |
1625 |
|
|
} |
1626 |
|
|
|
1627 |
|
✗ |
static void jar_xm_row(jar_xm_context_t* ctx) { |
1628 |
|
✗ |
if(ctx->position_jump) { |
1629 |
|
✗ |
ctx->current_table_index = ctx->jump_dest; |
1630 |
|
✗ |
ctx->current_row = ctx->jump_row; |
1631 |
|
✗ |
ctx->position_jump = false; |
1632 |
|
✗ |
ctx->pattern_break = false; |
1633 |
|
✗ |
ctx->jump_row = 0; |
1634 |
|
|
jar_xm_post_pattern_change(ctx); |
1635 |
|
✗ |
} else if(ctx->pattern_break) { |
1636 |
|
✗ |
ctx->current_table_index++; |
1637 |
|
✗ |
ctx->current_row = ctx->jump_row; |
1638 |
|
✗ |
ctx->pattern_break = false; |
1639 |
|
✗ |
ctx->jump_row = 0; |
1640 |
|
|
jar_xm_post_pattern_change(ctx); |
1641 |
|
|
} |
1642 |
|
✗ |
jar_xm_pattern_t* cur = ctx->module.patterns + ctx->module.pattern_table[ctx->current_table_index]; |
1643 |
|
|
bool in_a_loop = false; |
1644 |
|
|
|
1645 |
|
|
/* Read notes information for all channels into temporary pattern slot */ |
1646 |
|
✗ |
for(uint8_t i = 0; i < ctx->module.num_channels; ++i) { |
1647 |
|
✗ |
jar_xm_pattern_slot_t* s = cur->slots + ctx->current_row * ctx->module.num_channels + i; |
1648 |
|
✗ |
jar_xm_channel_context_t* ch = ctx->channels + i; |
1649 |
|
✗ |
ch->current = s; |
1650 |
|
|
// If there is no note delay effect (0xED) then... |
1651 |
|
✗ |
if(s->effect_type != 0xE || s->effect_param >> 4 != 0xD) { |
1652 |
|
|
//********** Process the channel slot information ********** |
1653 |
|
✗ |
jar_xm_handle_note_and_instrument(ctx, ch, s); |
1654 |
|
|
} else { |
1655 |
|
|
// read the note delay information |
1656 |
|
✗ |
ch->note_delay_param = s->effect_param & 0x0F; |
1657 |
|
|
} |
1658 |
|
✗ |
if(!in_a_loop && ch->pattern_loop_count > 0) { |
1659 |
|
|
// clarify if in a loop or not |
1660 |
|
|
in_a_loop = true; |
1661 |
|
|
} |
1662 |
|
|
} |
1663 |
|
|
|
1664 |
|
✗ |
if(!in_a_loop) { |
1665 |
|
|
/* No E6y loop is in effect (or we are in the first pass) */ |
1666 |
|
✗ |
ctx->loop_count = (ctx->row_loop_count[MAX_NUM_ROWS * ctx->current_table_index + ctx->current_row]++); |
1667 |
|
|
} |
1668 |
|
|
|
1669 |
|
|
/// Move to next row |
1670 |
|
✗ |
ctx->current_row++; /* uint8 warning: can increment from 255 to 0, in which case it is still necessary to go the next pattern. */ |
1671 |
|
✗ |
if (!ctx->position_jump && !ctx->pattern_break && (ctx->current_row >= cur->num_rows || ctx->current_row == 0)) { |
1672 |
|
✗ |
ctx->current_table_index++; |
1673 |
|
✗ |
ctx->current_row = ctx->jump_row; /* This will be 0 most of the time, except when E60 is used */ |
1674 |
|
✗ |
ctx->jump_row = 0; |
1675 |
|
|
jar_xm_post_pattern_change(ctx); |
1676 |
|
|
} |
1677 |
|
|
} |
1678 |
|
|
|
1679 |
|
✗ |
static void jar_xm_envelope_tick(jar_xm_channel_context_t *ch, jar_xm_envelope_t *env, uint16_t *counter, float *outval) { |
1680 |
|
✗ |
if(env->num_points < 2) { |
1681 |
|
✗ |
if(env->num_points == 1) { |
1682 |
|
✗ |
*outval = (float)env->points[0].value / (float)0x40; |
1683 |
|
✗ |
if(*outval > 1) { *outval = 1; }; |
1684 |
|
|
} else {; |
1685 |
|
|
return; |
1686 |
|
|
}; |
1687 |
|
|
} else { |
1688 |
|
✗ |
if(env->loop_enabled) { |
1689 |
|
✗ |
uint16_t loop_start = env->points[env->loop_start_point].frame; |
1690 |
|
✗ |
uint16_t loop_end = env->points[env->loop_end_point].frame; |
1691 |
|
|
uint16_t loop_length = loop_end - loop_start; |
1692 |
|
✗ |
if(*counter >= loop_end) { *counter -= loop_length; }; |
1693 |
|
|
}; |
1694 |
|
✗ |
for(uint8_t j = 0; j < (env->num_points - 1); ++j) { |
1695 |
|
✗ |
if(env->points[j].frame <= *counter && env->points[j+1].frame >= *counter) { |
1696 |
|
✗ |
*outval = jar_xm_envelope_lerp(env->points + j, env->points + j + 1, *counter) / (float)0x40; |
1697 |
|
✗ |
break; |
1698 |
|
|
}; |
1699 |
|
|
}; |
1700 |
|
|
/* Make sure it is safe to increment frame count */ |
1701 |
|
✗ |
if(!ch->sustained || !env->sustain_enabled || *counter != env->points[env->sustain_point].frame) { (*counter)++; }; |
1702 |
|
|
}; |
1703 |
|
|
}; |
1704 |
|
|
|
1705 |
|
✗ |
static void jar_xm_envelopes(jar_xm_channel_context_t *ch) { |
1706 |
|
✗ |
if(ch->instrument != NULL) { |
1707 |
|
✗ |
if(ch->instrument->volume_envelope.enabled) { |
1708 |
|
✗ |
if(!ch->sustained) { |
1709 |
|
✗ |
ch->fadeout_volume -= (float)ch->instrument->volume_fadeout / 65536.f; |
1710 |
|
✗ |
jar_xm_CLAMP_DOWN(ch->fadeout_volume); |
1711 |
|
|
}; |
1712 |
|
✗ |
jar_xm_envelope_tick(ch, &(ch->instrument->volume_envelope), &(ch->volume_envelope_frame_count), &(ch->volume_envelope_volume)); |
1713 |
|
|
}; |
1714 |
|
✗ |
if(ch->instrument->panning_envelope.enabled) { |
1715 |
|
✗ |
jar_xm_envelope_tick(ch, &(ch->instrument->panning_envelope), &(ch->panning_envelope_frame_count), &(ch->panning_envelope_panning)); |
1716 |
|
|
}; |
1717 |
|
|
}; |
1718 |
|
✗ |
}; |
1719 |
|
|
|
1720 |
|
✗ |
static void jar_xm_tick(jar_xm_context_t* ctx) { |
1721 |
|
✗ |
if(ctx->current_tick == 0) { |
1722 |
|
✗ |
jar_xm_row(ctx); // We have processed all ticks and we run the row |
1723 |
|
|
} |
1724 |
|
|
|
1725 |
|
|
jar_xm_module_t* mod = &(ctx->module); |
1726 |
|
✗ |
for(uint8_t i = 0; i < ctx->module.num_channels; ++i) { |
1727 |
|
✗ |
jar_xm_channel_context_t* ch = ctx->channels + i; |
1728 |
|
✗ |
jar_xm_envelopes(ch); |
1729 |
|
✗ |
jar_xm_autovibrato(ctx, ch); |
1730 |
|
✗ |
if(ch->arp_in_progress && !HAS_ARPEGGIO(ch->current)) { |
1731 |
|
✗ |
ch->arp_in_progress = false; |
1732 |
|
✗ |
ch->arp_note_offset = 0; |
1733 |
|
✗ |
jar_xm_update_frequency(ctx, ch); |
1734 |
|
|
} |
1735 |
|
✗ |
if(ch->vibrato_in_progress && !HAS_VIBRATO(ch->current)) { |
1736 |
|
✗ |
ch->vibrato_in_progress = false; |
1737 |
|
✗ |
ch->vibrato_note_offset = 0.f; |
1738 |
|
✗ |
jar_xm_update_frequency(ctx, ch); |
1739 |
|
|
} |
1740 |
|
|
|
1741 |
|
|
// Effects in volumne column mostly handled on a per tick basis |
1742 |
|
✗ |
switch(ch->current->volume_column & 0xF0) { |
1743 |
|
✗ |
case 0x50: // Checks for volume = 64 |
1744 |
|
✗ |
if(ch->current->volume_column != 0x50) break; |
1745 |
|
|
case 0x10: // Set volume 0-15 |
1746 |
|
|
case 0x20: // Set volume 16-32 |
1747 |
|
|
case 0x30: // Set volume 32-48 |
1748 |
|
|
case 0x40: // Set volume 48-64 |
1749 |
|
✗ |
ch->volume = (float)(ch->current->volume_column - 16) / 64.0f; |
1750 |
|
✗ |
break; |
1751 |
|
✗ |
case 0x60: // Volume slide down |
1752 |
|
✗ |
jar_xm_volume_slide(ch, ch->current->volume_column & 0x0F); |
1753 |
|
|
break; |
1754 |
|
✗ |
case 0x70: // Volume slide up |
1755 |
|
✗ |
jar_xm_volume_slide(ch, ch->current->volume_column << 4); |
1756 |
|
|
break; |
1757 |
|
✗ |
case 0x80: // Fine volume slide down |
1758 |
|
✗ |
jar_xm_volume_slide(ch, ch->current->volume_column & 0x0F); |
1759 |
|
|
break; |
1760 |
|
✗ |
case 0x90: // Fine volume slide up |
1761 |
|
✗ |
jar_xm_volume_slide(ch, ch->current->volume_column << 4); |
1762 |
|
|
break; |
1763 |
|
✗ |
case 0xA0: // Set vibrato speed |
1764 |
|
✗ |
ch->vibrato_param = (ch->vibrato_param & 0x0F) | ((ch->current->volume_column & 0x0F) << 4); |
1765 |
|
✗ |
break; |
1766 |
|
✗ |
case 0xB0: // Vibrato |
1767 |
|
✗ |
ch->vibrato_in_progress = false; |
1768 |
|
✗ |
jar_xm_vibrato(ctx, ch, ch->vibrato_param, ch->vibrato_ticks++); |
1769 |
|
✗ |
break; |
1770 |
|
✗ |
case 0xC0: // Set panning |
1771 |
|
✗ |
if(!ctx->current_tick ) { |
1772 |
|
✗ |
ch->panning = (float)(ch->current->volume_column & 0x0F) / 15.0f; |
1773 |
|
|
} |
1774 |
|
|
break; |
1775 |
|
✗ |
case 0xD0: // Panning slide left |
1776 |
|
✗ |
jar_xm_panning_slide(ch, ch->current->volume_column & 0x0F); |
1777 |
|
|
break; |
1778 |
|
✗ |
case 0xE0: // Panning slide right |
1779 |
|
✗ |
jar_xm_panning_slide(ch, ch->current->volume_column << 4); |
1780 |
|
|
break; |
1781 |
|
✗ |
case 0xF0: // Tone portamento |
1782 |
|
✗ |
if(!ctx->current_tick ) { |
1783 |
|
✗ |
if(ch->current->volume_column & 0x0F) { ch->tone_portamento_param = ((ch->current->volume_column & 0x0F) << 4) | (ch->current->volume_column & 0x0F); } |
1784 |
|
|
}; |
1785 |
|
✗ |
jar_xm_tone_portamento(ctx, ch); |
1786 |
|
✗ |
break; |
1787 |
|
|
default: |
1788 |
|
|
break; |
1789 |
|
|
} |
1790 |
|
|
|
1791 |
|
|
// Only some standard effects handled on a per tick basis |
1792 |
|
|
// see jar_xm_handle_note_and_instrument for all effects handling on a per row basis |
1793 |
|
✗ |
switch(ch->current->effect_type) { |
1794 |
|
✗ |
case 0: /* 0xy: Arpeggio */ |
1795 |
|
✗ |
if(ch->current->effect_param > 0) { |
1796 |
|
✗ |
char arp_offset = ctx->tempo % 3; |
1797 |
|
|
switch(arp_offset) { |
1798 |
|
✗ |
case 2: /* 0 -> x -> 0 -> y -> x -> … */ |
1799 |
|
✗ |
if(ctx->current_tick == 1) { |
1800 |
|
✗ |
ch->arp_in_progress = true; |
1801 |
|
✗ |
ch->arp_note_offset = ch->current->effect_param >> 4; |
1802 |
|
✗ |
jar_xm_update_frequency(ctx, ch); |
1803 |
|
✗ |
break; |
1804 |
|
|
} |
1805 |
|
|
/* No break here, this is intended */ |
1806 |
|
|
case 1: /* 0 -> 0 -> y -> x -> … */ |
1807 |
|
✗ |
if(ctx->current_tick == 0) { |
1808 |
|
✗ |
ch->arp_in_progress = false; |
1809 |
|
✗ |
ch->arp_note_offset = 0; |
1810 |
|
✗ |
jar_xm_update_frequency(ctx, ch); |
1811 |
|
✗ |
break; |
1812 |
|
|
} |
1813 |
|
|
/* No break here, this is intended */ |
1814 |
|
|
case 0: /* 0 -> y -> x -> … */ |
1815 |
|
✗ |
jar_xm_arpeggio(ctx, ch, ch->current->effect_param, ctx->current_tick - arp_offset); |
1816 |
|
|
default: |
1817 |
|
|
break; |
1818 |
|
|
} |
1819 |
|
|
} |
1820 |
|
|
break; |
1821 |
|
|
|
1822 |
|
✗ |
case 1: /* 1xx: Portamento up */ |
1823 |
|
✗ |
if(ctx->current_tick == 0) break; |
1824 |
|
✗ |
jar_xm_pitch_slide(ctx, ch, -ch->portamento_up_param); |
1825 |
|
|
break; |
1826 |
|
✗ |
case 2: /* 2xx: Portamento down */ |
1827 |
|
✗ |
if(ctx->current_tick == 0) break; |
1828 |
|
✗ |
jar_xm_pitch_slide(ctx, ch, ch->portamento_down_param); |
1829 |
|
|
break; |
1830 |
|
✗ |
case 3: /* 3xx: Tone portamento */ |
1831 |
|
✗ |
if(ctx->current_tick == 0) break; |
1832 |
|
✗ |
jar_xm_tone_portamento(ctx, ch); |
1833 |
|
✗ |
break; |
1834 |
|
✗ |
case 4: /* 4xy: Vibrato */ |
1835 |
|
✗ |
if(ctx->current_tick == 0) break; |
1836 |
|
✗ |
ch->vibrato_in_progress = true; |
1837 |
|
✗ |
jar_xm_vibrato(ctx, ch, ch->vibrato_param, ch->vibrato_ticks++); |
1838 |
|
✗ |
break; |
1839 |
|
✗ |
case 5: /* 5xy: Tone portamento + Volume slide */ |
1840 |
|
✗ |
if(ctx->current_tick == 0) break; |
1841 |
|
✗ |
jar_xm_tone_portamento(ctx, ch); |
1842 |
|
✗ |
jar_xm_volume_slide(ch, ch->volume_slide_param); |
1843 |
|
|
break; |
1844 |
|
✗ |
case 6: /* 6xy: Vibrato + Volume slide */ |
1845 |
|
✗ |
if(ctx->current_tick == 0) break; |
1846 |
|
✗ |
ch->vibrato_in_progress = true; |
1847 |
|
✗ |
jar_xm_vibrato(ctx, ch, ch->vibrato_param, ch->vibrato_ticks++); |
1848 |
|
✗ |
jar_xm_volume_slide(ch, ch->volume_slide_param); |
1849 |
|
|
break; |
1850 |
|
✗ |
case 7: /* 7xy: Tremolo */ |
1851 |
|
✗ |
if(ctx->current_tick == 0) break; |
1852 |
|
✗ |
jar_xm_tremolo(ctx, ch, ch->tremolo_param, ch->tremolo_ticks++); |
1853 |
|
✗ |
break; |
1854 |
|
|
case 8: /* 8xy: Set panning */ |
1855 |
|
|
break; |
1856 |
|
|
case 9: /* 9xy: Sample offset */ |
1857 |
|
|
break; |
1858 |
|
✗ |
case 0xA: /* Axy: Volume slide */ |
1859 |
|
✗ |
if(ctx->current_tick == 0) break; |
1860 |
|
✗ |
jar_xm_volume_slide(ch, ch->volume_slide_param); |
1861 |
|
|
break; |
1862 |
|
✗ |
case 0xE: /* EXy: Extended command */ |
1863 |
|
✗ |
switch(ch->current->effect_param >> 4) { |
1864 |
|
✗ |
case 0x9: /* E9y: Retrigger note */ |
1865 |
|
✗ |
if(ctx->current_tick != 0 && ch->current->effect_param & 0x0F) { |
1866 |
|
✗ |
if(!(ctx->current_tick % (ch->current->effect_param & 0x0F))) { |
1867 |
|
✗ |
jar_xm_trigger_note(ctx, ch, 0); |
1868 |
|
✗ |
jar_xm_envelopes(ch); |
1869 |
|
|
} |
1870 |
|
|
} |
1871 |
|
|
break; |
1872 |
|
✗ |
case 0xC: /* ECy: Note cut */ |
1873 |
|
✗ |
if((ch->current->effect_param & 0x0F) == ctx->current_tick) { |
1874 |
|
|
jar_xm_cut_note(ch); |
1875 |
|
|
} |
1876 |
|
|
break; |
1877 |
|
✗ |
case 0xD: /* EDy: Note delay */ |
1878 |
|
✗ |
if(ch->note_delay_param == ctx->current_tick) { |
1879 |
|
✗ |
jar_xm_handle_note_and_instrument(ctx, ch, ch->current); |
1880 |
|
✗ |
jar_xm_envelopes(ch); |
1881 |
|
|
} |
1882 |
|
|
break; |
1883 |
|
|
default: |
1884 |
|
|
break; |
1885 |
|
|
} |
1886 |
|
|
break; |
1887 |
|
|
case 16: /* Fxy: Set tempo/BPM */ |
1888 |
|
|
break; |
1889 |
|
✗ |
case 17: /* Hxy: Global volume slide */ |
1890 |
|
✗ |
if(ctx->current_tick == 0) break; |
1891 |
|
✗ |
if((ch->global_volume_slide_param & 0xF0) && (ch->global_volume_slide_param & 0x0F)) { break; }; /* Invalid state */ |
1892 |
|
✗ |
if(ch->global_volume_slide_param & 0xF0) { /* Global slide up */ |
1893 |
|
✗ |
float f = (float)(ch->global_volume_slide_param >> 4) / (float)0x40; |
1894 |
|
✗ |
ctx->global_volume += f; |
1895 |
|
✗ |
jar_xm_CLAMP_UP(ctx->global_volume); |
1896 |
|
|
} else { /* Global slide down */ |
1897 |
|
✗ |
float f = (float)(ch->global_volume_slide_param & 0x0F) / (float)0x40; |
1898 |
|
✗ |
ctx->global_volume -= f; |
1899 |
|
✗ |
jar_xm_CLAMP_DOWN(ctx->global_volume); |
1900 |
|
|
}; |
1901 |
|
|
break; |
1902 |
|
|
|
1903 |
|
✗ |
case 20: /* Kxx: Key off */ |
1904 |
|
✗ |
if(ctx->current_tick == ch->current->effect_param) { jar_xm_key_off(ch); }; |
1905 |
|
|
break; |
1906 |
|
|
case 21: /* Lxx: Set envelope position */ |
1907 |
|
|
break; |
1908 |
|
✗ |
case 25: /* Pxy: Panning slide */ |
1909 |
|
✗ |
if(ctx->current_tick == 0) break; |
1910 |
|
✗ |
jar_xm_panning_slide(ch, ch->panning_slide_param); |
1911 |
|
|
break; |
1912 |
|
✗ |
case 27: /* Rxy: Multi retrig note */ |
1913 |
|
✗ |
if(ctx->current_tick == 0) break; |
1914 |
|
✗ |
if(((ch->multi_retrig_param) & 0x0F) == 0) break; |
1915 |
|
✗ |
if((ctx->current_tick % (ch->multi_retrig_param & 0x0F)) == 0) { |
1916 |
|
✗ |
float v = ch->volume * multi_retrig_multiply[ch->multi_retrig_param >> 4] |
1917 |
|
✗ |
+ multi_retrig_add[ch->multi_retrig_param >> 4]; |
1918 |
|
✗ |
jar_xm_CLAMP(v); |
1919 |
|
✗ |
jar_xm_trigger_note(ctx, ch, 0); |
1920 |
|
✗ |
ch->volume = v; |
1921 |
|
|
}; |
1922 |
|
|
break; |
1923 |
|
|
|
1924 |
|
✗ |
case 29: /* Txy: Tremor */ |
1925 |
|
✗ |
if(ctx->current_tick == 0) break; |
1926 |
|
✗ |
ch->tremor_on = ( (ctx->current_tick - 1) % ((ch->tremor_param >> 4) + (ch->tremor_param & 0x0F) + 2) > (ch->tremor_param >> 4) ); |
1927 |
|
✗ |
break; |
1928 |
|
|
default: |
1929 |
|
|
break; |
1930 |
|
|
}; |
1931 |
|
|
|
1932 |
|
|
float panning, volume; |
1933 |
|
✗ |
panning = ch->panning + (ch->panning_envelope_panning - .5f) * (.5f - fabs(ch->panning - .5f)) * 2.0f; |
1934 |
|
✗ |
if(ch->tremor_on) { |
1935 |
|
|
volume = .0f; |
1936 |
|
|
} else { |
1937 |
|
✗ |
volume = ch->volume + ch->tremolo_volume; |
1938 |
|
✗ |
jar_xm_CLAMP(volume); |
1939 |
|
✗ |
volume *= ch->fadeout_volume * ch->volume_envelope_volume; |
1940 |
|
|
}; |
1941 |
|
|
|
1942 |
|
✗ |
if (mod->ramping) { |
1943 |
|
✗ |
ch->target_panning = panning; |
1944 |
|
✗ |
ch->target_volume = volume; |
1945 |
|
|
} else { |
1946 |
|
✗ |
ch->actual_panning = panning; |
1947 |
|
✗ |
ch->actual_volume = volume; |
1948 |
|
|
}; |
1949 |
|
|
}; |
1950 |
|
|
|
1951 |
|
✗ |
ctx->current_tick++; // ok so we understand that ticks increment within the row |
1952 |
|
✗ |
if(ctx->current_tick >= ctx->tempo + ctx->extra_ticks) { |
1953 |
|
|
// This means it reached the end of the row and we reset |
1954 |
|
✗ |
ctx->current_tick = 0; |
1955 |
|
✗ |
ctx->extra_ticks = 0; |
1956 |
|
|
}; |
1957 |
|
|
|
1958 |
|
|
// Number of ticks / second = BPM * 0.4 |
1959 |
|
✗ |
ctx->remaining_samples_in_tick += (float)ctx->rate / ((float)ctx->bpm * 0.4f); |
1960 |
|
✗ |
}; |
1961 |
|
|
|
1962 |
|
✗ |
static void jar_xm_next_of_sample(jar_xm_context_t* ctx, jar_xm_channel_context_t* ch, int previous) { |
1963 |
|
|
jar_xm_module_t* mod = &(ctx->module); |
1964 |
|
|
|
1965 |
|
|
// ch->curr_left = 0.f; |
1966 |
|
|
// ch->curr_right = 0.f; |
1967 |
|
✗ |
if(ch->instrument == NULL || ch->sample == NULL || ch->sample_position < 0) { |
1968 |
|
✗ |
ch->curr_left = 0.f; |
1969 |
|
✗ |
ch->curr_right = 0.f; |
1970 |
|
✗ |
if (mod->ramping) { |
1971 |
|
✗ |
if (ch->frame_count < jar_xm_SAMPLE_RAMPING_POINTS) { |
1972 |
|
✗ |
if (previous > -1) { |
1973 |
|
✗ |
ch->end_of_previous_sample_left[previous] = jar_xm_LERP(ch->end_of_previous_sample_left[ch->frame_count], ch->curr_left, (float)ch->frame_count / (float)jar_xm_SAMPLE_RAMPING_POINTS); |
1974 |
|
✗ |
ch->end_of_previous_sample_right[previous] = jar_xm_LERP(ch->end_of_previous_sample_right[ch->frame_count], ch->curr_right, (float)ch->frame_count / (float)jar_xm_SAMPLE_RAMPING_POINTS); |
1975 |
|
|
} else { |
1976 |
|
✗ |
ch->curr_left = jar_xm_LERP(ch->end_of_previous_sample_left[ch->frame_count], ch->curr_left, (float)ch->frame_count / (float)jar_xm_SAMPLE_RAMPING_POINTS); |
1977 |
|
✗ |
ch->curr_right = jar_xm_LERP(ch->end_of_previous_sample_right[ch->frame_count], ch->curr_right, (float)ch->frame_count / (float)jar_xm_SAMPLE_RAMPING_POINTS); |
1978 |
|
|
}; |
1979 |
|
|
}; |
1980 |
|
|
}; |
1981 |
|
✗ |
return; |
1982 |
|
|
}; |
1983 |
|
✗ |
if(ch->sample->length == 0) { |
1984 |
|
|
return; |
1985 |
|
|
}; |
1986 |
|
|
|
1987 |
|
|
float t = 0.f; |
1988 |
|
|
uint32_t b = 0; |
1989 |
|
✗ |
if(mod->linear_interpolation) { |
1990 |
|
✗ |
b = ch->sample_position + 1; |
1991 |
|
✗ |
t = ch->sample_position - (uint32_t)ch->sample_position; /* Cheaper than fmodf(., 1.f) */ |
1992 |
|
|
}; |
1993 |
|
|
|
1994 |
|
|
float u_left, u_right; |
1995 |
|
✗ |
u_left = ch->sample->data[(uint32_t)ch->sample_position]; |
1996 |
|
✗ |
if (ch->sample->stereo) { |
1997 |
|
✗ |
u_right = ch->sample->data[(uint32_t)ch->sample_position + ch->sample->length]; |
1998 |
|
|
} else { |
1999 |
|
|
u_right = u_left; |
2000 |
|
|
}; |
2001 |
|
|
float v_left = 0.f, v_right = 0.f; |
2002 |
|
✗ |
switch(ch->sample->loop_type) { |
2003 |
|
✗ |
case jar_xm_NO_LOOP: |
2004 |
|
✗ |
if(mod->linear_interpolation) { |
2005 |
|
✗ |
v_left = (b < ch->sample->length) ? ch->sample->data[b] : .0f; |
2006 |
|
✗ |
if (ch->sample->stereo) { |
2007 |
|
✗ |
v_right = (b < ch->sample->length) ? ch->sample->data[b + ch->sample->length] : .0f; |
2008 |
|
|
} else { |
2009 |
|
|
v_right = v_left; |
2010 |
|
|
}; |
2011 |
|
|
}; |
2012 |
|
✗ |
ch->sample_position += ch->step; |
2013 |
|
✗ |
if(ch->sample_position >= ch->sample->length) { ch->sample_position = -1; } // stop playing this sample |
2014 |
|
|
break; |
2015 |
|
✗ |
case jar_xm_FORWARD_LOOP: |
2016 |
|
✗ |
if(mod->linear_interpolation) { |
2017 |
|
✗ |
v_left = ch->sample->data[ (b == ch->sample->loop_end) ? ch->sample->loop_start : b ]; |
2018 |
|
✗ |
if (ch->sample->stereo) { |
2019 |
|
✗ |
v_right = ch->sample->data[ (b == ch->sample->loop_end) ? ch->sample->loop_start + ch->sample->length : b + ch->sample->length]; |
2020 |
|
|
} else { |
2021 |
|
|
v_right = v_left; |
2022 |
|
|
}; |
2023 |
|
|
}; |
2024 |
|
✗ |
ch->sample_position += ch->step; |
2025 |
|
✗ |
if (ch->sample_position >= ch->sample->loop_end) { |
2026 |
|
✗ |
ch->sample_position -= ch->sample->loop_length; |
2027 |
|
|
}; |
2028 |
|
✗ |
if(ch->sample_position >= ch->sample->length) { |
2029 |
|
✗ |
ch->sample_position = ch->sample->loop_start; |
2030 |
|
|
}; |
2031 |
|
|
break; |
2032 |
|
✗ |
case jar_xm_PING_PONG_LOOP: |
2033 |
|
✗ |
if(ch->ping) { |
2034 |
|
✗ |
if(mod->linear_interpolation) { |
2035 |
|
✗ |
v_left = (b >= ch->sample->loop_end) ? ch->sample->data[(uint32_t)ch->sample_position] : ch->sample->data[b]; |
2036 |
|
✗ |
if (ch->sample->stereo) { |
2037 |
|
✗ |
v_right = (b >= ch->sample->loop_end) ? ch->sample->data[(uint32_t)ch->sample_position + ch->sample->length] : ch->sample->data[b + ch->sample->length]; |
2038 |
|
|
} else { |
2039 |
|
|
v_right = v_left; |
2040 |
|
|
}; |
2041 |
|
|
}; |
2042 |
|
✗ |
ch->sample_position += ch->step; |
2043 |
|
✗ |
if(ch->sample_position >= ch->sample->loop_end) { |
2044 |
|
✗ |
ch->ping = false; |
2045 |
|
✗ |
ch->sample_position = (ch->sample->loop_end << 1) - ch->sample_position; |
2046 |
|
|
}; |
2047 |
|
✗ |
if(ch->sample_position >= ch->sample->length) { |
2048 |
|
✗ |
ch->ping = false; |
2049 |
|
✗ |
ch->sample_position -= ch->sample->length - 1; |
2050 |
|
|
}; |
2051 |
|
|
} else { |
2052 |
|
✗ |
if(mod->linear_interpolation) { |
2053 |
|
|
v_left = u_left; |
2054 |
|
|
v_right = u_right; |
2055 |
|
✗ |
u_left = (b == 1 || b - 2 <= ch->sample->loop_start) ? ch->sample->data[(uint32_t)ch->sample_position] : ch->sample->data[b - 2]; |
2056 |
|
✗ |
if (ch->sample->stereo) { |
2057 |
|
✗ |
u_right = (b == 1 || b - 2 <= ch->sample->loop_start) ? ch->sample->data[(uint32_t)ch->sample_position + ch->sample->length] : ch->sample->data[b + ch->sample->length - 2]; |
2058 |
|
|
} else { |
2059 |
|
|
u_right = u_left; |
2060 |
|
|
}; |
2061 |
|
|
}; |
2062 |
|
✗ |
ch->sample_position -= ch->step; |
2063 |
|
✗ |
if(ch->sample_position <= ch->sample->loop_start) { |
2064 |
|
✗ |
ch->ping = true; |
2065 |
|
✗ |
ch->sample_position = (ch->sample->loop_start << 1) - ch->sample_position; |
2066 |
|
|
}; |
2067 |
|
✗ |
if (ch->sample_position <= .0f) { |
2068 |
|
✗ |
ch->ping = true; |
2069 |
|
✗ |
ch->sample_position = .0f; |
2070 |
|
|
}; |
2071 |
|
|
}; |
2072 |
|
|
break; |
2073 |
|
|
|
2074 |
|
|
default: |
2075 |
|
|
v_left = .0f; |
2076 |
|
|
v_right = .0f; |
2077 |
|
|
break; |
2078 |
|
|
}; |
2079 |
|
|
|
2080 |
|
✗ |
float endval_left = mod->linear_interpolation ? jar_xm_LERP(u_left, v_left, t) : u_left; |
2081 |
|
✗ |
float endval_right = mod->linear_interpolation ? jar_xm_LERP(u_right, v_right, t) : u_right; |
2082 |
|
|
|
2083 |
|
✗ |
if (mod->ramping) { |
2084 |
|
✗ |
if(ch->frame_count < jar_xm_SAMPLE_RAMPING_POINTS) { |
2085 |
|
|
/* Smoothly transition between old and new sample. */ |
2086 |
|
✗ |
if (previous > -1) { |
2087 |
|
✗ |
ch->end_of_previous_sample_left[previous] = jar_xm_LERP(ch->end_of_previous_sample_left[ch->frame_count], endval_left, (float)ch->frame_count / (float)jar_xm_SAMPLE_RAMPING_POINTS); |
2088 |
|
✗ |
ch->end_of_previous_sample_right[previous] = jar_xm_LERP(ch->end_of_previous_sample_right[ch->frame_count], endval_right, (float)ch->frame_count / (float)jar_xm_SAMPLE_RAMPING_POINTS); |
2089 |
|
|
} else { |
2090 |
|
✗ |
ch->curr_left = jar_xm_LERP(ch->end_of_previous_sample_left[ch->frame_count], endval_left, (float)ch->frame_count / (float)jar_xm_SAMPLE_RAMPING_POINTS); |
2091 |
|
✗ |
ch->curr_right = jar_xm_LERP(ch->end_of_previous_sample_right[ch->frame_count], endval_right, (float)ch->frame_count / (float)jar_xm_SAMPLE_RAMPING_POINTS); |
2092 |
|
|
}; |
2093 |
|
|
}; |
2094 |
|
|
}; |
2095 |
|
|
|
2096 |
|
✗ |
if (previous > -1) { |
2097 |
|
✗ |
ch->end_of_previous_sample_left[previous] = endval_left; |
2098 |
|
✗ |
ch->end_of_previous_sample_right[previous] = endval_right; |
2099 |
|
|
} else { |
2100 |
|
✗ |
ch->curr_left = endval_left; |
2101 |
|
✗ |
ch->curr_right = endval_right; |
2102 |
|
|
}; |
2103 |
|
|
}; |
2104 |
|
|
|
2105 |
|
|
// gather all channel audio into stereo float |
2106 |
|
✗ |
static void jar_xm_mixdown(jar_xm_context_t* ctx, float* left, float* right) { |
2107 |
|
|
jar_xm_module_t* mod = &(ctx->module); |
2108 |
|
|
|
2109 |
|
✗ |
if(ctx->remaining_samples_in_tick <= 0) { |
2110 |
|
✗ |
jar_xm_tick(ctx); |
2111 |
|
|
}; |
2112 |
|
✗ |
ctx->remaining_samples_in_tick--; |
2113 |
|
✗ |
*left = 0.f; |
2114 |
|
✗ |
*right = 0.f; |
2115 |
|
✗ |
if(ctx->max_loop_count > 0 && ctx->loop_count > ctx->max_loop_count) { return; } |
2116 |
|
|
|
2117 |
|
✗ |
for(uint8_t i = 0; i < ctx->module.num_channels; ++i) { |
2118 |
|
✗ |
jar_xm_channel_context_t* ch = ctx->channels + i; |
2119 |
|
✗ |
if(ch->instrument != NULL && ch->sample != NULL && ch->sample_position >= 0) { |
2120 |
|
✗ |
jar_xm_next_of_sample(ctx, ch, -1); |
2121 |
|
✗ |
if(!ch->muted && !ch->instrument->muted) { |
2122 |
|
✗ |
*left += ch->curr_left * ch->actual_volume * (1.f - ch->actual_panning); |
2123 |
|
✗ |
*right += ch->curr_right * ch->actual_volume * ch->actual_panning; |
2124 |
|
|
}; |
2125 |
|
|
|
2126 |
|
✗ |
if (mod->ramping) { |
2127 |
|
✗ |
ch->frame_count++; |
2128 |
|
✗ |
jar_xm_SLIDE_TOWARDS(ch->actual_volume, ch->target_volume, ctx->volume_ramp); |
2129 |
|
✗ |
jar_xm_SLIDE_TOWARDS(ch->actual_panning, ch->target_panning, ctx->panning_ramp); |
2130 |
|
|
}; |
2131 |
|
|
}; |
2132 |
|
|
}; |
2133 |
|
✗ |
if (ctx->global_volume != 1.0f) { |
2134 |
|
✗ |
*left *= ctx->global_volume; |
2135 |
|
✗ |
*right *= ctx->global_volume; |
2136 |
|
|
}; |
2137 |
|
|
|
2138 |
|
|
// experimental |
2139 |
|
|
// float counter = (float)ctx->generated_samples * 0.0001f |
2140 |
|
|
// *left = tan(&left + sin(counter)); |
2141 |
|
|
// *right = tan(&right + cos(counter)); |
2142 |
|
|
|
2143 |
|
|
// apply brick wall limiter when audio goes beyond bounderies |
2144 |
|
✗ |
if(*left < -1.0) {*left = -1.0;} else if(*left > 1.0) {*left = 1.0;}; |
2145 |
|
✗ |
if(*right < -1.0) {*right = -1.0;} else if(*right > 1.0) {*right = 1.0;}; |
2146 |
|
|
}; |
2147 |
|
|
|
2148 |
|
✗ |
void jar_xm_generate_samples(jar_xm_context_t* ctx, float* output, size_t numsamples) { |
2149 |
|
✗ |
if(ctx && output) { |
2150 |
|
✗ |
ctx->generated_samples += numsamples; |
2151 |
|
✗ |
for(size_t i = 0; i < numsamples; i++) { |
2152 |
|
✗ |
jar_xm_mixdown(ctx, output + (2 * i), output + (2 * i + 1)); |
2153 |
|
|
}; |
2154 |
|
|
}; |
2155 |
|
✗ |
}; |
2156 |
|
|
|
2157 |
|
✗ |
uint64_t jar_xm_get_remaining_samples(jar_xm_context_t* ctx) { |
2158 |
|
|
uint64_t total = 0; |
2159 |
|
✗ |
uint8_t currentLoopCount = jar_xm_get_loop_count(ctx); |
2160 |
|
✗ |
jar_xm_set_max_loop_count(ctx, 0); |
2161 |
|
✗ |
while(jar_xm_get_loop_count(ctx) == currentLoopCount) { |
2162 |
|
✗ |
total += ctx->remaining_samples_in_tick; |
2163 |
|
✗ |
ctx->remaining_samples_in_tick = 0; |
2164 |
|
✗ |
jar_xm_tick(ctx); |
2165 |
|
|
} |
2166 |
|
✗ |
ctx->loop_count = currentLoopCount; |
2167 |
|
✗ |
return total; |
2168 |
|
|
} |
2169 |
|
|
|
2170 |
|
|
//-------------------------------------------- |
2171 |
|
|
//FILE LOADER - TODO - NEEDS TO BE CLEANED UP |
2172 |
|
|
//-------------------------------------------- |
2173 |
|
|
#undef DEBUG |
2174 |
|
|
#define DEBUG(...) do { \ |
2175 |
|
|
fprintf(stderr, __VA_ARGS__); \ |
2176 |
|
|
fflush(stderr); \ |
2177 |
|
|
} while(0) |
2178 |
|
|
|
2179 |
|
|
#define DEBUG_ERR(...) do { \ |
2180 |
|
|
fprintf(stderr, __VA_ARGS__); \ |
2181 |
|
|
fflush(stderr); \ |
2182 |
|
|
} while(0) |
2183 |
|
|
|
2184 |
|
|
#define FATAL(...) do { \ |
2185 |
|
|
fprintf(stderr, __VA_ARGS__); \ |
2186 |
|
|
fflush(stderr); \ |
2187 |
|
|
exit(1); \ |
2188 |
|
|
} while(0) |
2189 |
|
|
|
2190 |
|
|
#define FATAL_ERR(...) do { \ |
2191 |
|
|
fprintf(stderr, __VA_ARGS__); \ |
2192 |
|
|
fflush(stderr); \ |
2193 |
|
|
exit(1); \ |
2194 |
|
|
} while(0) |
2195 |
|
|
|
2196 |
|
|
|
2197 |
|
✗ |
int jar_xm_create_context_from_file(jar_xm_context_t** ctx, uint32_t rate, const char* filename) { |
2198 |
|
|
FILE* xmf; |
2199 |
|
|
int size; |
2200 |
|
|
int ret; |
2201 |
|
|
|
2202 |
|
✗ |
xmf = fopen(filename, "rb"); |
2203 |
|
✗ |
if(xmf == NULL) { |
2204 |
|
✗ |
DEBUG_ERR("Could not open input file"); |
2205 |
|
✗ |
*ctx = NULL; |
2206 |
|
✗ |
return 3; |
2207 |
|
|
} |
2208 |
|
|
|
2209 |
|
✗ |
fseek(xmf, 0, SEEK_END); |
2210 |
|
✗ |
size = ftell(xmf); |
2211 |
|
✗ |
rewind(xmf); |
2212 |
|
✗ |
if(size == -1) { |
2213 |
|
✗ |
fclose(xmf); |
2214 |
|
✗ |
DEBUG_ERR("fseek() failed"); |
2215 |
|
✗ |
*ctx = NULL; |
2216 |
|
✗ |
return 4; |
2217 |
|
|
} |
2218 |
|
|
|
2219 |
|
✗ |
char* data = JARXM_MALLOC(size + 1); |
2220 |
|
✗ |
if(!data || fread(data, 1, size, xmf) < size) { |
2221 |
|
✗ |
fclose(xmf); |
2222 |
|
✗ |
DEBUG_ERR(data ? "fread() failed" : "JARXM_MALLOC() failed"); |
2223 |
|
✗ |
JARXM_FREE(data); |
2224 |
|
✗ |
*ctx = NULL; |
2225 |
|
✗ |
return 5; |
2226 |
|
|
} |
2227 |
|
|
|
2228 |
|
✗ |
fclose(xmf); |
2229 |
|
|
|
2230 |
|
✗ |
ret = jar_xm_create_context_safe(ctx, data, size, rate); |
2231 |
|
✗ |
JARXM_FREE(data); |
2232 |
|
|
|
2233 |
|
✗ |
switch(ret) { |
2234 |
|
|
case 0: |
2235 |
|
|
break; |
2236 |
|
✗ |
case 1: DEBUG("could not create context: module is not sane\n"); |
2237 |
|
✗ |
*ctx = NULL; |
2238 |
|
✗ |
return 1; |
2239 |
|
|
break; |
2240 |
|
✗ |
case 2: FATAL("could not create context: malloc failed\n"); |
2241 |
|
|
return 2; |
2242 |
|
|
break; |
2243 |
|
✗ |
default: FATAL("could not create context: unknown error\n"); |
2244 |
|
|
return 6; |
2245 |
|
|
break; |
2246 |
|
|
} |
2247 |
|
|
|
2248 |
|
|
return 0; |
2249 |
|
|
} |
2250 |
|
|
|
2251 |
|
|
// not part of the original library |
2252 |
|
✗ |
void jar_xm_reset(jar_xm_context_t* ctx) { |
2253 |
|
✗ |
for (uint16_t i = 0; i < jar_xm_get_number_of_channels(ctx); i++) { |
2254 |
|
✗ |
jar_xm_cut_note(&ctx->channels[i]); |
2255 |
|
|
} |
2256 |
|
✗ |
ctx->generated_samples = 0; |
2257 |
|
✗ |
ctx->current_row = 0; |
2258 |
|
✗ |
ctx->current_table_index = 0; |
2259 |
|
✗ |
ctx->current_tick = 0; |
2260 |
|
✗ |
ctx->tempo =ctx->default_tempo; // reset to file default value |
2261 |
|
✗ |
ctx->bpm = ctx->default_bpm; // reset to file default value |
2262 |
|
✗ |
ctx->global_volume = ctx->default_global_volume; // reset to file default value |
2263 |
|
|
} |
2264 |
|
|
|
2265 |
|
|
|
2266 |
|
✗ |
void jar_xm_flip_linear_interpolation(jar_xm_context_t* ctx) { |
2267 |
|
✗ |
if (ctx->module.linear_interpolation) { |
2268 |
|
✗ |
ctx->module.linear_interpolation = 0; |
2269 |
|
|
} else { |
2270 |
|
✗ |
ctx->module.linear_interpolation = 1; |
2271 |
|
|
} |
2272 |
|
|
} |
2273 |
|
|
|
2274 |
|
✗ |
void jar_xm_table_jump(jar_xm_context_t* ctx, int table_ptr) { |
2275 |
|
✗ |
for (uint16_t i = 0; i < jar_xm_get_number_of_channels(ctx); i++) { |
2276 |
|
✗ |
jar_xm_cut_note(&ctx->channels[i]); |
2277 |
|
|
} |
2278 |
|
✗ |
ctx->current_row = 0; |
2279 |
|
✗ |
ctx->current_tick = 0; |
2280 |
|
✗ |
if(table_ptr > 0 && table_ptr < ctx->module.length) { |
2281 |
|
✗ |
ctx->current_table_index = table_ptr; |
2282 |
|
✗ |
ctx->module.restart_position = table_ptr; // The reason to jump is to start a new loop or track |
2283 |
|
|
} else { |
2284 |
|
✗ |
ctx->current_table_index = 0; |
2285 |
|
✗ |
ctx->module.restart_position = 0; // The reason to jump is to start a new loop or track |
2286 |
|
✗ |
ctx->tempo =ctx->default_tempo; // reset to file default value |
2287 |
|
✗ |
ctx->bpm = ctx->default_bpm; // reset to file default value |
2288 |
|
✗ |
ctx->global_volume = ctx->default_global_volume; // reset to file default value |
2289 |
|
|
}; |
2290 |
|
|
} |
2291 |
|
|
|
2292 |
|
|
|
2293 |
|
|
// TRANSLATE NOTE NUMBER INTO USER VALUE (ie. 1 = C-1, 2 = C#1, 3 = D-1 ... ) |
2294 |
|
✗ |
const char* xm_note_chr(int number) { |
2295 |
|
✗ |
if (number == NOTE_OFF) { |
2296 |
|
|
return "=="; |
2297 |
|
|
}; |
2298 |
|
✗ |
number = number % 12; |
2299 |
|
✗ |
switch(number) { |
2300 |
|
|
case 1: return "C-"; |
2301 |
|
✗ |
case 2: return "C#"; |
2302 |
|
✗ |
case 3: return "D-"; |
2303 |
|
✗ |
case 4: return "D#"; |
2304 |
|
✗ |
case 5: return "E-"; |
2305 |
|
✗ |
case 6: return "F-"; |
2306 |
|
✗ |
case 7: return "F#"; |
2307 |
|
✗ |
case 8: return "G-"; |
2308 |
|
✗ |
case 9: return "G#"; |
2309 |
|
✗ |
case 10: return "A-"; |
2310 |
|
✗ |
case 11: return "A#"; |
2311 |
|
|
case 12: return "B-"; |
2312 |
|
|
}; |
2313 |
|
✗ |
return "??"; |
2314 |
|
|
}; |
2315 |
|
|
|
2316 |
|
✗ |
const char* xm_octave_chr(int number) { |
2317 |
|
✗ |
if (number == NOTE_OFF) { |
2318 |
|
|
return "="; |
2319 |
|
|
}; |
2320 |
|
|
|
2321 |
|
✗ |
int number2 = number - number % 12; |
2322 |
|
✗ |
int result = floor(number2 / 12) + 1; |
2323 |
|
✗ |
switch(result) { |
2324 |
|
|
case 1: return "1"; |
2325 |
|
✗ |
case 2: return "2"; |
2326 |
|
✗ |
case 3: return "3"; |
2327 |
|
✗ |
case 4: return "4"; |
2328 |
|
✗ |
case 5: return "5"; |
2329 |
|
✗ |
case 6: return "6"; |
2330 |
|
✗ |
case 7: return "7"; |
2331 |
|
✗ |
case 8: return "8"; |
2332 |
|
✗ |
default: return "?"; /* UNKNOWN */ |
2333 |
|
|
}; |
2334 |
|
|
|
2335 |
|
|
}; |
2336 |
|
|
|
2337 |
|
|
// TRANSLATE NOTE EFFECT CODE INTO USER VALUE |
2338 |
|
✗ |
const char* xm_effect_chr(int fx) { |
2339 |
|
✗ |
switch(fx) { |
2340 |
|
|
case 0: return "0"; /* ZERO = NO EFFECT */ |
2341 |
|
✗ |
case 1: return "1"; /* 1xx: Portamento up */ |
2342 |
|
✗ |
case 2: return "2"; /* 2xx: Portamento down */ |
2343 |
|
✗ |
case 3: return "3"; /* 3xx: Tone portamento */ |
2344 |
|
✗ |
case 4: return "4"; /* 4xy: Vibrato */ |
2345 |
|
✗ |
case 5: return "5"; /* 5xy: Tone portamento + Volume slide */ |
2346 |
|
✗ |
case 6: return "6"; /* 6xy: Vibrato + Volume slide */ |
2347 |
|
✗ |
case 7: return "7"; /* 7xy: Tremolo */ |
2348 |
|
✗ |
case 8: return "8"; /* 8xx: Set panning */ |
2349 |
|
✗ |
case 9: return "9"; /* 9xx: Sample offset */ |
2350 |
|
✗ |
case 0xA: return "A";/* Axy: Volume slide */ |
2351 |
|
✗ |
case 0xB: return "B";/* Bxx: Position jump */ |
2352 |
|
✗ |
case 0xC: return "C";/* Cxx: Set volume */ |
2353 |
|
✗ |
case 0xD: return "D";/* Dxx: Pattern break */ |
2354 |
|
✗ |
case 0xE: return "E";/* EXy: Extended command */ |
2355 |
|
✗ |
case 0xF: return "F";/* Fxx: Set tempo/BPM */ |
2356 |
|
✗ |
case 16: return "G"; /* Gxx: Set global volume */ |
2357 |
|
✗ |
case 17: return "H"; /* Hxy: Global volume slide */ |
2358 |
|
✗ |
case 21: return "L"; /* Lxx: Set envelope position */ |
2359 |
|
✗ |
case 25: return "P"; /* Pxy: Panning slide */ |
2360 |
|
✗ |
case 27: return "R"; /* Rxy: Multi retrig note */ |
2361 |
|
✗ |
case 29: return "T"; /* Txy: Tremor */ |
2362 |
|
✗ |
case 33: return "X"; /* Xxy: Extra stuff */ |
2363 |
|
✗ |
default: return "?"; /* UNKNOWN */ |
2364 |
|
|
}; |
2365 |
|
|
} |
2366 |
|
|
|
2367 |
|
|
#ifdef JAR_XM_RAYLIB |
2368 |
|
|
|
2369 |
|
|
#include "raylib.h" // Need RayLib API calls for the DEBUG display |
2370 |
|
|
|
2371 |
|
|
void jar_xm_debug(jar_xm_context_t *ctx) { |
2372 |
|
|
int size=40; |
2373 |
|
|
int x = 0, y = 0; |
2374 |
|
|
|
2375 |
|
|
// DEBUG VARIABLES |
2376 |
|
|
y += size; DrawText(TextFormat("CUR TBL = %i", ctx->current_table_index), x, y, size, WHITE); |
2377 |
|
|
y += size; DrawText(TextFormat("CUR PAT = %i", ctx->module.pattern_table[ctx->current_table_index]), x, y, size, WHITE); |
2378 |
|
|
y += size; DrawText(TextFormat("POS JMP = %d", ctx->position_jump), x, y, size, WHITE); |
2379 |
|
|
y += size; DrawText(TextFormat("JMP DST = %i", ctx->jump_dest), x, y, size, WHITE); |
2380 |
|
|
y += size; DrawText(TextFormat("PTN BRK = %d", ctx->pattern_break), x, y, size, WHITE); |
2381 |
|
|
y += size; DrawText(TextFormat("CUR ROW = %i", ctx->current_row), x, y, size, WHITE); |
2382 |
|
|
y += size; DrawText(TextFormat("JMP ROW = %i", ctx->jump_row), x, y, size, WHITE); |
2383 |
|
|
y += size; DrawText(TextFormat("ROW LCT = %i", ctx->row_loop_count), x, y, size, WHITE); |
2384 |
|
|
y += size; DrawText(TextFormat("LCT = %i", ctx->loop_count), x, y, size, WHITE); |
2385 |
|
|
y += size; DrawText(TextFormat("MAX LCT = %i", ctx->max_loop_count), x, y, size, WHITE); |
2386 |
|
|
x = size * 12; y = 0; |
2387 |
|
|
|
2388 |
|
|
y += size; DrawText(TextFormat("CUR TCK = %i", ctx->current_tick), x, y, size, WHITE); |
2389 |
|
|
y += size; DrawText(TextFormat("XTR TCK = %i", ctx->extra_ticks), x, y, size, WHITE); |
2390 |
|
|
y += size; DrawText(TextFormat("TCK/ROW = %i", ctx->tempo), x, y, size, ORANGE); |
2391 |
|
|
y += size; DrawText(TextFormat("SPL TCK = %f", ctx->remaining_samples_in_tick), x, y, size, WHITE); |
2392 |
|
|
y += size; DrawText(TextFormat("GEN SPL = %i", ctx->generated_samples), x, y, size, WHITE); |
2393 |
|
|
y += size * 7; |
2394 |
|
|
|
2395 |
|
|
x = 0; |
2396 |
|
|
size=16; |
2397 |
|
|
// TIMELINE OF MODULE |
2398 |
|
|
for (int i=0; i < ctx->module.length; i++) { |
2399 |
|
|
if (i == ctx->jump_dest) { |
2400 |
|
|
if (ctx->position_jump) { |
2401 |
|
|
DrawRectangle(i * size * 2, y - size, size * 2, size, GOLD); |
2402 |
|
|
} else { |
2403 |
|
|
DrawRectangle(i * size * 2, y - size, size * 2, size, BROWN); |
2404 |
|
|
}; |
2405 |
|
|
}; |
2406 |
|
|
if (i == ctx->current_table_index) { |
2407 |
|
|
// DrawText(TextFormat("%02X", ctx->current_tick), i * size * 2, y - size, size, WHITE); |
2408 |
|
|
DrawRectangle(i * size * 2, y, size * 2, size, RED); |
2409 |
|
|
DrawText(TextFormat("%02X", ctx->current_row), i * size * 2, y - size, size, YELLOW); |
2410 |
|
|
} else { |
2411 |
|
|
DrawRectangle(i * size * 2, y, size * 2, size, ORANGE); |
2412 |
|
|
}; |
2413 |
|
|
DrawText(TextFormat("%02X", ctx->module.pattern_table[i]), i * size * 2, y, size, WHITE); |
2414 |
|
|
}; |
2415 |
|
|
y += size; |
2416 |
|
|
|
2417 |
|
|
jar_xm_pattern_t* cur = ctx->module.patterns + ctx->module.pattern_table[ctx->current_table_index]; |
2418 |
|
|
|
2419 |
|
|
/* DISPLAY CURRENTLY PLAYING PATTERN */ |
2420 |
|
|
|
2421 |
|
|
x += 2 * size; |
2422 |
|
|
for(uint8_t i = 0; i < ctx->module.num_channels; i++) { |
2423 |
|
|
DrawRectangle(x, y, 8 * size, size, PURPLE); |
2424 |
|
|
DrawText("N", x, y, size, YELLOW); |
2425 |
|
|
DrawText("I", x + size * 2, y, size, YELLOW); |
2426 |
|
|
DrawText("V", x + size * 4, y, size, YELLOW); |
2427 |
|
|
DrawText("FX", x + size * 6, y, size, YELLOW); |
2428 |
|
|
x += 9 * size; |
2429 |
|
|
}; |
2430 |
|
|
x += size; |
2431 |
|
|
for (int j=(ctx->current_row - 14); j<(ctx->current_row + 15); j++) { |
2432 |
|
|
y += size; |
2433 |
|
|
x = 0; |
2434 |
|
|
if (j >=0 && j < (cur->num_rows)) { |
2435 |
|
|
DrawRectangle(x, y, size * 2, size, BROWN); |
2436 |
|
|
DrawText(TextFormat("%02X",j), x, y, size, WHITE); |
2437 |
|
|
x += 2 * size; |
2438 |
|
|
for(uint8_t i = 0; i < ctx->module.num_channels; i++) { |
2439 |
|
|
if (j==(ctx->current_row)) { |
2440 |
|
|
DrawRectangle(x, y, 8 * size, size, DARKGREEN); |
2441 |
|
|
} else { |
2442 |
|
|
DrawRectangle(x, y, 8 * size, size, DARKGRAY); |
2443 |
|
|
}; |
2444 |
|
|
jar_xm_pattern_slot_t *s = cur->slots + j * ctx->module.num_channels + i; |
2445 |
|
|
// jar_xm_channel_context_t *ch = ctx->channels + i; |
2446 |
|
|
if (s->note > 0) {DrawText(TextFormat("%s%s", xm_note_chr(s->note), xm_octave_chr(s->note) ), x, y, size, WHITE);} else {DrawText("...", x, y, size, GRAY);}; |
2447 |
|
|
if (s->instrument > 0) { |
2448 |
|
|
DrawText(TextFormat("%02X", s->instrument), x + size * 2, y, size, WHITE); |
2449 |
|
|
if (s->volume_column == 0) { |
2450 |
|
|
DrawText(TextFormat("%02X", 64), x + size * 4, y, size, YELLOW); |
2451 |
|
|
}; |
2452 |
|
|
} else { |
2453 |
|
|
DrawText("..", x + size * 2, y, size, GRAY); |
2454 |
|
|
if (s->volume_column == 0) { |
2455 |
|
|
DrawText("..", x + size * 4, y, size, GRAY); |
2456 |
|
|
}; |
2457 |
|
|
}; |
2458 |
|
|
if (s->volume_column > 0) {DrawText(TextFormat("%02X", (s->volume_column - 16)), x + size * 4, y, size, WHITE);}; |
2459 |
|
|
if (s->effect_type > 0 || s->effect_param > 0) {DrawText(TextFormat("%s%02X", xm_effect_chr(s->effect_type), s->effect_param), x + size * 6, y, size, WHITE);}; |
2460 |
|
|
x += 9 * size; |
2461 |
|
|
}; |
2462 |
|
|
}; |
2463 |
|
|
}; |
2464 |
|
|
|
2465 |
|
|
} |
2466 |
|
|
#endif // RayLib extension |
2467 |
|
|
|
2468 |
|
|
#endif//end of JAR_XM_IMPLEMENTATION |
2469 |
|
|
//------------------------------------------------------------------------------- |
2470 |
|
|
|
2471 |
|
|
#endif//end of INCLUDE_JAR_XM_H |
2472 |
|
|
|