| Line |
Branch |
Exec |
Source |
| 1 |
|
|
/* |
| 2 |
|
|
* $Id: linkhash.c,v 1.4 2006/01/26 02:16:28 mclark Exp $ |
| 3 |
|
|
* |
| 4 |
|
|
* Copyright (c) 2004, 2005 Metaparadigm Pte. Ltd. |
| 5 |
|
|
* Michael Clark <michael@metaparadigm.com> |
| 6 |
|
|
* Copyright (c) 2009 Hewlett-Packard Development Company, L.P. |
| 7 |
|
|
* |
| 8 |
|
|
* This library is free software; you can redistribute it and/or modify |
| 9 |
|
|
* it under the terms of the MIT license. See COPYING for details. |
| 10 |
|
|
* |
| 11 |
|
|
*/ |
| 12 |
|
|
|
| 13 |
|
|
#include "config.h" |
| 14 |
|
|
|
| 15 |
|
|
#include <assert.h> |
| 16 |
|
|
#include <limits.h> |
| 17 |
|
|
#include <stdarg.h> |
| 18 |
|
|
#include <stddef.h> |
| 19 |
|
|
#include <stdio.h> |
| 20 |
|
|
#include <stdlib.h> |
| 21 |
|
|
#include <string.h> |
| 22 |
|
|
|
| 23 |
|
|
#ifdef HAVE_ENDIAN_H |
| 24 |
|
|
#include <endian.h> /* attempt to define endianness */ |
| 25 |
|
|
#endif |
| 26 |
|
|
|
| 27 |
|
|
#if defined(_MSC_VER) || defined(__MINGW32__) |
| 28 |
|
|
#define WIN32_LEAN_AND_MEAN |
| 29 |
|
|
#include <windows.h> /* Get InterlockedCompareExchange */ |
| 30 |
|
|
#endif |
| 31 |
|
|
|
| 32 |
|
|
#include "linkhash.h" |
| 33 |
|
|
#include "random_seed.h" |
| 34 |
|
|
|
| 35 |
|
|
/* hash functions */ |
| 36 |
|
|
static unsigned long lh_char_hash(const void *k); |
| 37 |
|
|
static unsigned long lh_perllike_str_hash(const void *k); |
| 38 |
|
|
static lh_hash_fn *char_hash_fn = lh_char_hash; |
| 39 |
|
|
|
| 40 |
|
|
/* comparison functions */ |
| 41 |
|
|
int lh_char_equal(const void *k1, const void *k2); |
| 42 |
|
|
int lh_ptr_equal(const void *k1, const void *k2); |
| 43 |
|
|
|
| 44 |
|
✗ |
int json_global_set_string_hash(const int h) |
| 45 |
|
|
{ |
| 46 |
|
✗ |
switch (h) |
| 47 |
|
|
{ |
| 48 |
|
✗ |
case JSON_C_STR_HASH_DFLT: char_hash_fn = lh_char_hash; break; |
| 49 |
|
✗ |
case JSON_C_STR_HASH_PERLLIKE: char_hash_fn = lh_perllike_str_hash; break; |
| 50 |
|
|
default: return -1; |
| 51 |
|
|
} |
| 52 |
|
|
return 0; |
| 53 |
|
|
} |
| 54 |
|
|
|
| 55 |
|
✗ |
static unsigned long lh_ptr_hash(const void *k) |
| 56 |
|
|
{ |
| 57 |
|
|
/* CAW: refactored to be 64bit nice */ |
| 58 |
|
✗ |
return (unsigned long)((((ptrdiff_t)k * LH_PRIME) >> 4) & ULONG_MAX); |
| 59 |
|
|
} |
| 60 |
|
|
|
| 61 |
|
✗ |
int lh_ptr_equal(const void *k1, const void *k2) |
| 62 |
|
|
{ |
| 63 |
|
✗ |
return (k1 == k2); |
| 64 |
|
|
} |
| 65 |
|
|
|
| 66 |
|
|
/* |
| 67 |
|
|
* hashlittle from lookup3.c, by Bob Jenkins, May 2006, Public Domain. |
| 68 |
|
|
* https://burtleburtle.net/bob/c/lookup3.c |
| 69 |
|
|
* minor modifications to make functions static so no symbols are exported |
| 70 |
|
|
* minor modifications to compile with -Werror |
| 71 |
|
|
*/ |
| 72 |
|
|
|
| 73 |
|
|
/* |
| 74 |
|
|
------------------------------------------------------------------------------- |
| 75 |
|
|
lookup3.c, by Bob Jenkins, May 2006, Public Domain. |
| 76 |
|
|
|
| 77 |
|
|
These are functions for producing 32-bit hashes for hash table lookup. |
| 78 |
|
|
hashword(), hashlittle(), hashlittle2(), hashbig(), mix(), and final() |
| 79 |
|
|
are externally useful functions. Routines to test the hash are included |
| 80 |
|
|
if SELF_TEST is defined. You can use this free for any purpose. It's in |
| 81 |
|
|
the public domain. It has no warranty. |
| 82 |
|
|
|
| 83 |
|
|
You probably want to use hashlittle(). hashlittle() and hashbig() |
| 84 |
|
|
hash byte arrays. hashlittle() is faster than hashbig() on |
| 85 |
|
|
little-endian machines. Intel and AMD are little-endian machines. |
| 86 |
|
|
On second thought, you probably want hashlittle2(), which is identical to |
| 87 |
|
|
hashlittle() except it returns two 32-bit hashes for the price of one. |
| 88 |
|
|
You could implement hashbig2() if you wanted but I haven't bothered here. |
| 89 |
|
|
|
| 90 |
|
|
If you want to find a hash of, say, exactly 7 integers, do |
| 91 |
|
|
a = i1; b = i2; c = i3; |
| 92 |
|
|
mix(a,b,c); |
| 93 |
|
|
a += i4; b += i5; c += i6; |
| 94 |
|
|
mix(a,b,c); |
| 95 |
|
|
a += i7; |
| 96 |
|
|
final(a,b,c); |
| 97 |
|
|
then use c as the hash value. If you have a variable length array of |
| 98 |
|
|
4-byte integers to hash, use hashword(). If you have a byte array (like |
| 99 |
|
|
a character string), use hashlittle(). If you have several byte arrays, or |
| 100 |
|
|
a mix of things, see the comments above hashlittle(). |
| 101 |
|
|
|
| 102 |
|
|
Why is this so big? I read 12 bytes at a time into 3 4-byte integers, |
| 103 |
|
|
then mix those integers. This is fast (you can do a lot more thorough |
| 104 |
|
|
mixing with 12*3 instructions on 3 integers than you can with 3 instructions |
| 105 |
|
|
on 1 byte), but shoehorning those bytes into integers efficiently is messy. |
| 106 |
|
|
------------------------------------------------------------------------------- |
| 107 |
|
|
*/ |
| 108 |
|
|
|
| 109 |
|
|
/* |
| 110 |
|
|
* My best guess at if you are big-endian or little-endian. This may |
| 111 |
|
|
* need adjustment. |
| 112 |
|
|
*/ |
| 113 |
|
|
#if (defined(__BYTE_ORDER) && defined(__LITTLE_ENDIAN) && __BYTE_ORDER == __LITTLE_ENDIAN) || \ |
| 114 |
|
|
(defined(i386) || defined(__i386__) || defined(__i486__) || defined(__i586__) || \ |
| 115 |
|
|
defined(__i686__) || defined(vax) || defined(MIPSEL)) |
| 116 |
|
|
#define HASH_LITTLE_ENDIAN 1 |
| 117 |
|
|
#define HASH_BIG_ENDIAN 0 |
| 118 |
|
|
#elif (defined(__BYTE_ORDER) && defined(__BIG_ENDIAN) && __BYTE_ORDER == __BIG_ENDIAN) || \ |
| 119 |
|
|
(defined(sparc) || defined(POWERPC) || defined(mc68000) || defined(sel)) |
| 120 |
|
|
#define HASH_LITTLE_ENDIAN 0 |
| 121 |
|
|
#define HASH_BIG_ENDIAN 1 |
| 122 |
|
|
#else |
| 123 |
|
|
#define HASH_LITTLE_ENDIAN 0 |
| 124 |
|
|
#define HASH_BIG_ENDIAN 0 |
| 125 |
|
|
#endif |
| 126 |
|
|
|
| 127 |
|
|
#define hashsize(n) ((uint32_t)1 << (n)) |
| 128 |
|
|
#define hashmask(n) (hashsize(n) - 1) |
| 129 |
|
|
#define rot(x, k) (((x) << (k)) | ((x) >> (32 - (k)))) |
| 130 |
|
|
|
| 131 |
|
|
/* |
| 132 |
|
|
------------------------------------------------------------------------------- |
| 133 |
|
|
mix -- mix 3 32-bit values reversibly. |
| 134 |
|
|
|
| 135 |
|
|
This is reversible, so any information in (a,b,c) before mix() is |
| 136 |
|
|
still in (a,b,c) after mix(). |
| 137 |
|
|
|
| 138 |
|
|
If four pairs of (a,b,c) inputs are run through mix(), or through |
| 139 |
|
|
mix() in reverse, there are at least 32 bits of the output that |
| 140 |
|
|
are sometimes the same for one pair and different for another pair. |
| 141 |
|
|
This was tested for: |
| 142 |
|
|
* pairs that differed by one bit, by two bits, in any combination |
| 143 |
|
|
of top bits of (a,b,c), or in any combination of bottom bits of |
| 144 |
|
|
(a,b,c). |
| 145 |
|
|
* "differ" is defined as +, -, ^, or ~^. For + and -, I transformed |
| 146 |
|
|
the output delta to a Gray code (a^(a>>1)) so a string of 1's (as |
| 147 |
|
|
is commonly produced by subtraction) look like a single 1-bit |
| 148 |
|
|
difference. |
| 149 |
|
|
* the base values were pseudorandom, all zero but one bit set, or |
| 150 |
|
|
all zero plus a counter that starts at zero. |
| 151 |
|
|
|
| 152 |
|
|
Some k values for my "a-=c; a^=rot(c,k); c+=b;" arrangement that |
| 153 |
|
|
satisfy this are |
| 154 |
|
|
4 6 8 16 19 4 |
| 155 |
|
|
9 15 3 18 27 15 |
| 156 |
|
|
14 9 3 7 17 3 |
| 157 |
|
|
Well, "9 15 3 18 27 15" didn't quite get 32 bits diffing |
| 158 |
|
|
for "differ" defined as + with a one-bit base and a two-bit delta. I |
| 159 |
|
|
used https://burtleburtle.net/bob/hash/avalanche.html to choose |
| 160 |
|
|
the operations, constants, and arrangements of the variables. |
| 161 |
|
|
|
| 162 |
|
|
This does not achieve avalanche. There are input bits of (a,b,c) |
| 163 |
|
|
that fail to affect some output bits of (a,b,c), especially of a. The |
| 164 |
|
|
most thoroughly mixed value is c, but it doesn't really even achieve |
| 165 |
|
|
avalanche in c. |
| 166 |
|
|
|
| 167 |
|
|
This allows some parallelism. Read-after-writes are good at doubling |
| 168 |
|
|
the number of bits affected, so the goal of mixing pulls in the opposite |
| 169 |
|
|
direction as the goal of parallelism. I did what I could. Rotates |
| 170 |
|
|
seem to cost as much as shifts on every machine I could lay my hands |
| 171 |
|
|
on, and rotates are much kinder to the top and bottom bits, so I used |
| 172 |
|
|
rotates. |
| 173 |
|
|
------------------------------------------------------------------------------- |
| 174 |
|
|
*/ |
| 175 |
|
|
/* clang-format off */ |
| 176 |
|
|
#define mix(a,b,c) \ |
| 177 |
|
|
{ \ |
| 178 |
|
|
a -= c; a ^= rot(c, 4); c += b; \ |
| 179 |
|
|
b -= a; b ^= rot(a, 6); a += c; \ |
| 180 |
|
|
c -= b; c ^= rot(b, 8); b += a; \ |
| 181 |
|
|
a -= c; a ^= rot(c,16); c += b; \ |
| 182 |
|
|
b -= a; b ^= rot(a,19); a += c; \ |
| 183 |
|
|
c -= b; c ^= rot(b, 4); b += a; \ |
| 184 |
|
|
} |
| 185 |
|
|
/* clang-format on */ |
| 186 |
|
|
|
| 187 |
|
|
/* |
| 188 |
|
|
------------------------------------------------------------------------------- |
| 189 |
|
|
final -- final mixing of 3 32-bit values (a,b,c) into c |
| 190 |
|
|
|
| 191 |
|
|
Pairs of (a,b,c) values differing in only a few bits will usually |
| 192 |
|
|
produce values of c that look totally different. This was tested for |
| 193 |
|
|
* pairs that differed by one bit, by two bits, in any combination |
| 194 |
|
|
of top bits of (a,b,c), or in any combination of bottom bits of |
| 195 |
|
|
(a,b,c). |
| 196 |
|
|
* "differ" is defined as +, -, ^, or ~^. For + and -, I transformed |
| 197 |
|
|
the output delta to a Gray code (a^(a>>1)) so a string of 1's (as |
| 198 |
|
|
is commonly produced by subtraction) look like a single 1-bit |
| 199 |
|
|
difference. |
| 200 |
|
|
* the base values were pseudorandom, all zero but one bit set, or |
| 201 |
|
|
all zero plus a counter that starts at zero. |
| 202 |
|
|
|
| 203 |
|
|
These constants passed: |
| 204 |
|
|
14 11 25 16 4 14 24 |
| 205 |
|
|
12 14 25 16 4 14 24 |
| 206 |
|
|
and these came close: |
| 207 |
|
|
4 8 15 26 3 22 24 |
| 208 |
|
|
10 8 15 26 3 22 24 |
| 209 |
|
|
11 8 15 26 3 22 24 |
| 210 |
|
|
------------------------------------------------------------------------------- |
| 211 |
|
|
*/ |
| 212 |
|
|
/* clang-format off */ |
| 213 |
|
|
#define final(a,b,c) \ |
| 214 |
|
|
{ \ |
| 215 |
|
|
c ^= b; c -= rot(b,14); \ |
| 216 |
|
|
a ^= c; a -= rot(c,11); \ |
| 217 |
|
|
b ^= a; b -= rot(a,25); \ |
| 218 |
|
|
c ^= b; c -= rot(b,16); \ |
| 219 |
|
|
a ^= c; a -= rot(c,4); \ |
| 220 |
|
|
b ^= a; b -= rot(a,14); \ |
| 221 |
|
|
c ^= b; c -= rot(b,24); \ |
| 222 |
|
|
} |
| 223 |
|
|
/* clang-format on */ |
| 224 |
|
|
|
| 225 |
|
|
/* |
| 226 |
|
|
------------------------------------------------------------------------------- |
| 227 |
|
|
hashlittle() -- hash a variable-length key into a 32-bit value |
| 228 |
|
|
k : the key (the unaligned variable-length array of bytes) |
| 229 |
|
|
length : the length of the key, counting by bytes |
| 230 |
|
|
initval : can be any 4-byte value |
| 231 |
|
|
Returns a 32-bit value. Every bit of the key affects every bit of |
| 232 |
|
|
the return value. Two keys differing by one or two bits will have |
| 233 |
|
|
totally different hash values. |
| 234 |
|
|
|
| 235 |
|
|
The best hash table sizes are powers of 2. There is no need to do |
| 236 |
|
|
mod a prime (mod is sooo slow!). If you need less than 32 bits, |
| 237 |
|
|
use a bitmask. For example, if you need only 10 bits, do |
| 238 |
|
|
h = (h & hashmask(10)); |
| 239 |
|
|
In which case, the hash table should have hashsize(10) elements. |
| 240 |
|
|
|
| 241 |
|
|
If you are hashing n strings (uint8_t **)k, do it like this: |
| 242 |
|
|
for (i=0, h=0; i<n; ++i) h = hashlittle( k[i], len[i], h); |
| 243 |
|
|
|
| 244 |
|
|
By Bob Jenkins, 2006. bob_jenkins@burtleburtle.net. You may use this |
| 245 |
|
|
code any way you wish, private, educational, or commercial. It's free. |
| 246 |
|
|
|
| 247 |
|
|
Use for hash table lookup, or anything where one collision in 2^^32 is |
| 248 |
|
|
acceptable. Do NOT use for cryptographic purposes. |
| 249 |
|
|
------------------------------------------------------------------------------- |
| 250 |
|
|
*/ |
| 251 |
|
|
|
| 252 |
|
|
/* clang-format off */ |
| 253 |
|
✗ |
static uint32_t hashlittle(const void *key, size_t length, uint32_t initval) |
| 254 |
|
|
{ |
| 255 |
|
|
uint32_t a,b,c; /* internal state */ |
| 256 |
|
|
union |
| 257 |
|
|
{ |
| 258 |
|
|
const void *ptr; |
| 259 |
|
|
size_t i; |
| 260 |
|
|
} u; /* needed for Mac Powerbook G4 */ |
| 261 |
|
|
|
| 262 |
|
|
/* Set up the internal state */ |
| 263 |
|
✗ |
a = b = c = 0xdeadbeef + ((uint32_t)length) + initval; |
| 264 |
|
|
|
| 265 |
|
✗ |
u.ptr = key; |
| 266 |
|
✗ |
if (HASH_LITTLE_ENDIAN && ((u.i & 0x3) == 0)) { |
| 267 |
|
|
const uint32_t *k = (const uint32_t *)key; /* read 32-bit chunks */ |
| 268 |
|
|
|
| 269 |
|
|
/*------ all but last block: aligned reads and affect 32 bits of (a,b,c) */ |
| 270 |
|
✗ |
while (length > 12) |
| 271 |
|
|
{ |
| 272 |
|
✗ |
a += k[0]; |
| 273 |
|
✗ |
b += k[1]; |
| 274 |
|
✗ |
c += k[2]; |
| 275 |
|
✗ |
mix(a,b,c); |
| 276 |
|
✗ |
length -= 12; |
| 277 |
|
✗ |
k += 3; |
| 278 |
|
|
} |
| 279 |
|
|
|
| 280 |
|
|
/*----------------------------- handle the last (probably partial) block */ |
| 281 |
|
|
/* |
| 282 |
|
|
* "k[2]&0xffffff" actually reads beyond the end of the string, but |
| 283 |
|
|
* then masks off the part it's not allowed to read. Because the |
| 284 |
|
|
* string is aligned, the masked-off tail is in the same word as the |
| 285 |
|
|
* rest of the string. Every machine with memory protection I've seen |
| 286 |
|
|
* does it on word boundaries, so is OK with this. But VALGRIND will |
| 287 |
|
|
* still catch it and complain. The masking trick does make the hash |
| 288 |
|
|
* noticeably faster for short strings (like English words). |
| 289 |
|
|
* AddressSanitizer is similarly picky about overrunning |
| 290 |
|
|
* the buffer. (https://clang.llvm.org/docs/AddressSanitizer.html) |
| 291 |
|
|
*/ |
| 292 |
|
|
#ifdef VALGRIND |
| 293 |
|
|
#define PRECISE_MEMORY_ACCESS 1 |
| 294 |
|
|
#elif defined(__SANITIZE_ADDRESS__) /* GCC's ASAN */ |
| 295 |
|
|
#define PRECISE_MEMORY_ACCESS 1 |
| 296 |
|
|
#elif defined(__has_feature) |
| 297 |
|
|
#if __has_feature(address_sanitizer) /* Clang's ASAN */ |
| 298 |
|
|
#define PRECISE_MEMORY_ACCESS 1 |
| 299 |
|
|
#endif |
| 300 |
|
|
#endif |
| 301 |
|
|
#ifndef PRECISE_MEMORY_ACCESS |
| 302 |
|
|
|
| 303 |
|
✗ |
switch(length) |
| 304 |
|
|
{ |
| 305 |
|
✗ |
case 12: c+=k[2]; b+=k[1]; a+=k[0]; break; |
| 306 |
|
✗ |
case 11: c+=k[2]&0xffffff; b+=k[1]; a+=k[0]; break; |
| 307 |
|
✗ |
case 10: c+=k[2]&0xffff; b+=k[1]; a+=k[0]; break; |
| 308 |
|
✗ |
case 9 : c+=k[2]&0xff; b+=k[1]; a+=k[0]; break; |
| 309 |
|
✗ |
case 8 : b+=k[1]; a+=k[0]; break; |
| 310 |
|
✗ |
case 7 : b+=k[1]&0xffffff; a+=k[0]; break; |
| 311 |
|
✗ |
case 6 : b+=k[1]&0xffff; a+=k[0]; break; |
| 312 |
|
✗ |
case 5 : b+=k[1]&0xff; a+=k[0]; break; |
| 313 |
|
✗ |
case 4 : a+=k[0]; break; |
| 314 |
|
✗ |
case 3 : a+=k[0]&0xffffff; break; |
| 315 |
|
✗ |
case 2 : a+=k[0]&0xffff; break; |
| 316 |
|
✗ |
case 1 : a+=k[0]&0xff; break; |
| 317 |
|
|
case 0 : return c; /* zero length strings require no mixing */ |
| 318 |
|
|
} |
| 319 |
|
|
|
| 320 |
|
|
#else /* make valgrind happy */ |
| 321 |
|
|
|
| 322 |
|
|
const uint8_t *k8 = (const uint8_t *)k; |
| 323 |
|
|
switch(length) |
| 324 |
|
|
{ |
| 325 |
|
|
case 12: c+=k[2]; b+=k[1]; a+=k[0]; break; |
| 326 |
|
|
case 11: c+=((uint32_t)k8[10])<<16; /* fall through */ |
| 327 |
|
|
case 10: c+=((uint32_t)k8[9])<<8; /* fall through */ |
| 328 |
|
|
case 9 : c+=k8[8]; /* fall through */ |
| 329 |
|
|
case 8 : b+=k[1]; a+=k[0]; break; |
| 330 |
|
|
case 7 : b+=((uint32_t)k8[6])<<16; /* fall through */ |
| 331 |
|
|
case 6 : b+=((uint32_t)k8[5])<<8; /* fall through */ |
| 332 |
|
|
case 5 : b+=k8[4]; /* fall through */ |
| 333 |
|
|
case 4 : a+=k[0]; break; |
| 334 |
|
|
case 3 : a+=((uint32_t)k8[2])<<16; /* fall through */ |
| 335 |
|
|
case 2 : a+=((uint32_t)k8[1])<<8; /* fall through */ |
| 336 |
|
|
case 1 : a+=k8[0]; break; |
| 337 |
|
|
case 0 : return c; |
| 338 |
|
|
} |
| 339 |
|
|
|
| 340 |
|
|
#endif /* !valgrind */ |
| 341 |
|
|
|
| 342 |
|
|
} |
| 343 |
|
✗ |
else if (HASH_LITTLE_ENDIAN && ((u.i & 0x1) == 0)) |
| 344 |
|
|
{ |
| 345 |
|
|
const uint16_t *k = (const uint16_t *)key; /* read 16-bit chunks */ |
| 346 |
|
|
const uint8_t *k8; |
| 347 |
|
|
|
| 348 |
|
|
/*--------------- all but last block: aligned reads and different mixing */ |
| 349 |
|
✗ |
while (length > 12) |
| 350 |
|
|
{ |
| 351 |
|
✗ |
a += k[0] + (((uint32_t)k[1])<<16); |
| 352 |
|
✗ |
b += k[2] + (((uint32_t)k[3])<<16); |
| 353 |
|
✗ |
c += k[4] + (((uint32_t)k[5])<<16); |
| 354 |
|
✗ |
mix(a,b,c); |
| 355 |
|
✗ |
length -= 12; |
| 356 |
|
✗ |
k += 6; |
| 357 |
|
|
} |
| 358 |
|
|
|
| 359 |
|
|
/*----------------------------- handle the last (probably partial) block */ |
| 360 |
|
|
k8 = (const uint8_t *)k; |
| 361 |
|
✗ |
switch(length) |
| 362 |
|
|
{ |
| 363 |
|
✗ |
case 12: c+=k[4]+(((uint32_t)k[5])<<16); |
| 364 |
|
✗ |
b+=k[2]+(((uint32_t)k[3])<<16); |
| 365 |
|
✗ |
a+=k[0]+(((uint32_t)k[1])<<16); |
| 366 |
|
✗ |
break; |
| 367 |
|
✗ |
case 11: c+=((uint32_t)k8[10])<<16; /* fall through */ |
| 368 |
|
✗ |
case 10: c+=k[4]; |
| 369 |
|
✗ |
b+=k[2]+(((uint32_t)k[3])<<16); |
| 370 |
|
✗ |
a+=k[0]+(((uint32_t)k[1])<<16); |
| 371 |
|
✗ |
break; |
| 372 |
|
✗ |
case 9 : c+=k8[8]; /* fall through */ |
| 373 |
|
✗ |
case 8 : b+=k[2]+(((uint32_t)k[3])<<16); |
| 374 |
|
✗ |
a+=k[0]+(((uint32_t)k[1])<<16); |
| 375 |
|
✗ |
break; |
| 376 |
|
✗ |
case 7 : b+=((uint32_t)k8[6])<<16; /* fall through */ |
| 377 |
|
✗ |
case 6 : b+=k[2]; |
| 378 |
|
✗ |
a+=k[0]+(((uint32_t)k[1])<<16); |
| 379 |
|
✗ |
break; |
| 380 |
|
✗ |
case 5 : b+=k8[4]; /* fall through */ |
| 381 |
|
✗ |
case 4 : a+=k[0]+(((uint32_t)k[1])<<16); |
| 382 |
|
✗ |
break; |
| 383 |
|
✗ |
case 3 : a+=((uint32_t)k8[2])<<16; /* fall through */ |
| 384 |
|
✗ |
case 2 : a+=k[0]; |
| 385 |
|
✗ |
break; |
| 386 |
|
✗ |
case 1 : a+=k8[0]; |
| 387 |
|
✗ |
break; |
| 388 |
|
|
case 0 : return c; /* zero length requires no mixing */ |
| 389 |
|
|
} |
| 390 |
|
|
|
| 391 |
|
|
} |
| 392 |
|
|
else |
| 393 |
|
|
{ |
| 394 |
|
|
/* need to read the key one byte at a time */ |
| 395 |
|
|
const uint8_t *k = (const uint8_t *)key; |
| 396 |
|
|
|
| 397 |
|
|
/*--------------- all but the last block: affect some 32 bits of (a,b,c) */ |
| 398 |
|
✗ |
while (length > 12) |
| 399 |
|
|
{ |
| 400 |
|
✗ |
a += k[0]; |
| 401 |
|
✗ |
a += ((uint32_t)k[1])<<8; |
| 402 |
|
✗ |
a += ((uint32_t)k[2])<<16; |
| 403 |
|
✗ |
a += ((uint32_t)k[3])<<24; |
| 404 |
|
✗ |
b += k[4]; |
| 405 |
|
✗ |
b += ((uint32_t)k[5])<<8; |
| 406 |
|
✗ |
b += ((uint32_t)k[6])<<16; |
| 407 |
|
✗ |
b += ((uint32_t)k[7])<<24; |
| 408 |
|
✗ |
c += k[8]; |
| 409 |
|
✗ |
c += ((uint32_t)k[9])<<8; |
| 410 |
|
✗ |
c += ((uint32_t)k[10])<<16; |
| 411 |
|
✗ |
c += ((uint32_t)k[11])<<24; |
| 412 |
|
✗ |
mix(a,b,c); |
| 413 |
|
✗ |
length -= 12; |
| 414 |
|
✗ |
k += 12; |
| 415 |
|
|
} |
| 416 |
|
|
|
| 417 |
|
|
/*-------------------------------- last block: affect all 32 bits of (c) */ |
| 418 |
|
✗ |
switch(length) /* all the case statements fall through */ |
| 419 |
|
|
{ |
| 420 |
|
✗ |
case 12: c+=((uint32_t)k[11])<<24; /* FALLTHRU */ |
| 421 |
|
✗ |
case 11: c+=((uint32_t)k[10])<<16; /* FALLTHRU */ |
| 422 |
|
✗ |
case 10: c+=((uint32_t)k[9])<<8; /* FALLTHRU */ |
| 423 |
|
✗ |
case 9 : c+=k[8]; /* FALLTHRU */ |
| 424 |
|
✗ |
case 8 : b+=((uint32_t)k[7])<<24; /* FALLTHRU */ |
| 425 |
|
✗ |
case 7 : b+=((uint32_t)k[6])<<16; /* FALLTHRU */ |
| 426 |
|
✗ |
case 6 : b+=((uint32_t)k[5])<<8; /* FALLTHRU */ |
| 427 |
|
✗ |
case 5 : b+=k[4]; /* FALLTHRU */ |
| 428 |
|
✗ |
case 4 : a+=((uint32_t)k[3])<<24; /* FALLTHRU */ |
| 429 |
|
✗ |
case 3 : a+=((uint32_t)k[2])<<16; /* FALLTHRU */ |
| 430 |
|
✗ |
case 2 : a+=((uint32_t)k[1])<<8; /* FALLTHRU */ |
| 431 |
|
✗ |
case 1 : a+=k[0]; |
| 432 |
|
✗ |
break; |
| 433 |
|
|
case 0 : return c; |
| 434 |
|
|
} |
| 435 |
|
|
} |
| 436 |
|
|
|
| 437 |
|
✗ |
final(a,b,c); |
| 438 |
|
✗ |
return c; |
| 439 |
|
|
} |
| 440 |
|
|
/* clang-format on */ |
| 441 |
|
|
|
| 442 |
|
|
/* a simple hash function similar to what perl does for strings. |
| 443 |
|
|
* for good results, the string should not be excessively large. |
| 444 |
|
|
*/ |
| 445 |
|
✗ |
static unsigned long lh_perllike_str_hash(const void *k) |
| 446 |
|
|
{ |
| 447 |
|
|
const char *rkey = (const char *)k; |
| 448 |
|
|
unsigned hashval = 1; |
| 449 |
|
|
|
| 450 |
|
✗ |
while (*rkey) |
| 451 |
|
✗ |
hashval = hashval * 33 + *rkey++; |
| 452 |
|
|
|
| 453 |
|
✗ |
return hashval; |
| 454 |
|
|
} |
| 455 |
|
|
|
| 456 |
|
✗ |
static unsigned long lh_char_hash(const void *k) |
| 457 |
|
|
{ |
| 458 |
|
|
#if defined _MSC_VER || defined __MINGW32__ |
| 459 |
|
|
#define RANDOM_SEED_TYPE LONG |
| 460 |
|
|
#else |
| 461 |
|
|
#define RANDOM_SEED_TYPE int |
| 462 |
|
|
#endif |
| 463 |
|
|
static volatile RANDOM_SEED_TYPE random_seed = -1; |
| 464 |
|
|
|
| 465 |
|
✗ |
if (random_seed == -1) |
| 466 |
|
|
{ |
| 467 |
|
|
RANDOM_SEED_TYPE seed; |
| 468 |
|
|
/* we can't use -1 as it is the uninitialized sentinel */ |
| 469 |
|
✗ |
while ((seed = json_c_get_random_seed()) == -1) {} |
| 470 |
|
|
#if SIZEOF_INT == 8 && defined __GCC_HAVE_SYNC_COMPARE_AND_SWAP_8 |
| 471 |
|
|
#define USE_SYNC_COMPARE_AND_SWAP 1 |
| 472 |
|
|
#endif |
| 473 |
|
|
#if SIZEOF_INT == 4 && defined __GCC_HAVE_SYNC_COMPARE_AND_SWAP_4 |
| 474 |
|
|
#define USE_SYNC_COMPARE_AND_SWAP 1 |
| 475 |
|
|
#endif |
| 476 |
|
|
#if SIZEOF_INT == 2 && defined __GCC_HAVE_SYNC_COMPARE_AND_SWAP_2 |
| 477 |
|
|
#define USE_SYNC_COMPARE_AND_SWAP 1 |
| 478 |
|
|
#endif |
| 479 |
|
|
#if defined USE_SYNC_COMPARE_AND_SWAP |
| 480 |
|
✗ |
(void)__sync_val_compare_and_swap(&random_seed, -1, seed); |
| 481 |
|
|
#elif defined _MSC_VER || defined __MINGW32__ |
| 482 |
|
|
InterlockedCompareExchange(&random_seed, seed, -1); |
| 483 |
|
|
#else |
| 484 |
|
|
//#warning "racy random seed initialization if used by multiple threads" |
| 485 |
|
|
random_seed = seed; /* potentially racy */ |
| 486 |
|
|
#endif |
| 487 |
|
|
} |
| 488 |
|
|
|
| 489 |
|
✗ |
return hashlittle((const char *)k, strlen((const char *)k), (uint32_t)random_seed); |
| 490 |
|
|
} |
| 491 |
|
|
|
| 492 |
|
✗ |
int lh_char_equal(const void *k1, const void *k2) |
| 493 |
|
|
{ |
| 494 |
|
✗ |
return (strcmp((const char *)k1, (const char *)k2) == 0); |
| 495 |
|
|
} |
| 496 |
|
|
|
| 497 |
|
✗ |
struct lh_table *lh_table_new(int size, lh_entry_free_fn *free_fn, lh_hash_fn *hash_fn, |
| 498 |
|
|
lh_equal_fn *equal_fn) |
| 499 |
|
|
{ |
| 500 |
|
|
int i; |
| 501 |
|
|
struct lh_table *t; |
| 502 |
|
|
|
| 503 |
|
|
/* Allocate space for elements to avoid divisions by zero. */ |
| 504 |
|
|
assert(size > 0); |
| 505 |
|
✗ |
t = (struct lh_table *)calloc(1, sizeof(struct lh_table)); |
| 506 |
|
✗ |
if (!t) |
| 507 |
|
|
return NULL; |
| 508 |
|
|
|
| 509 |
|
|
t->count = 0; |
| 510 |
|
✗ |
t->size = size; |
| 511 |
|
✗ |
t->table = (struct lh_entry *)calloc(size, sizeof(struct lh_entry)); |
| 512 |
|
✗ |
if (!t->table) |
| 513 |
|
|
{ |
| 514 |
|
✗ |
free(t); |
| 515 |
|
✗ |
return NULL; |
| 516 |
|
|
} |
| 517 |
|
✗ |
t->free_fn = free_fn; |
| 518 |
|
✗ |
t->hash_fn = hash_fn; |
| 519 |
|
✗ |
t->equal_fn = equal_fn; |
| 520 |
|
✗ |
for (i = 0; i < size; i++) |
| 521 |
|
✗ |
t->table[i].k = LH_EMPTY; |
| 522 |
|
|
return t; |
| 523 |
|
|
} |
| 524 |
|
|
|
| 525 |
|
✗ |
struct lh_table *lh_kchar_table_new(int size, lh_entry_free_fn *free_fn) |
| 526 |
|
|
{ |
| 527 |
|
✗ |
return lh_table_new(size, free_fn, char_hash_fn, lh_char_equal); |
| 528 |
|
|
} |
| 529 |
|
|
|
| 530 |
|
✗ |
struct lh_table *lh_kptr_table_new(int size, lh_entry_free_fn *free_fn) |
| 531 |
|
|
{ |
| 532 |
|
✗ |
return lh_table_new(size, free_fn, lh_ptr_hash, lh_ptr_equal); |
| 533 |
|
|
} |
| 534 |
|
|
|
| 535 |
|
✗ |
int lh_table_resize(struct lh_table *t, int new_size) |
| 536 |
|
|
{ |
| 537 |
|
|
struct lh_table *new_t; |
| 538 |
|
|
struct lh_entry *ent; |
| 539 |
|
|
|
| 540 |
|
✗ |
new_t = lh_table_new(new_size, NULL, t->hash_fn, t->equal_fn); |
| 541 |
|
✗ |
if (new_t == NULL) |
| 542 |
|
|
return -1; |
| 543 |
|
|
|
| 544 |
|
✗ |
for (ent = t->head; ent != NULL; ent = ent->next) |
| 545 |
|
|
{ |
| 546 |
|
✗ |
unsigned long h = lh_get_hash(new_t, ent->k); |
| 547 |
|
|
unsigned int opts = 0; |
| 548 |
|
✗ |
if (ent->k_is_constant) |
| 549 |
|
|
opts = JSON_C_OBJECT_ADD_CONSTANT_KEY; |
| 550 |
|
✗ |
if (lh_table_insert_w_hash(new_t, ent->k, ent->v, h, opts) != 0) |
| 551 |
|
|
{ |
| 552 |
|
✗ |
lh_table_free(new_t); |
| 553 |
|
✗ |
return -1; |
| 554 |
|
|
} |
| 555 |
|
|
} |
| 556 |
|
✗ |
free(t->table); |
| 557 |
|
✗ |
t->table = new_t->table; |
| 558 |
|
✗ |
t->size = new_size; |
| 559 |
|
✗ |
t->head = new_t->head; |
| 560 |
|
✗ |
t->tail = new_t->tail; |
| 561 |
|
✗ |
free(new_t); |
| 562 |
|
|
|
| 563 |
|
✗ |
return 0; |
| 564 |
|
|
} |
| 565 |
|
|
|
| 566 |
|
✗ |
void lh_table_free(struct lh_table *t) |
| 567 |
|
|
{ |
| 568 |
|
|
struct lh_entry *c; |
| 569 |
|
✗ |
if (t->free_fn) |
| 570 |
|
|
{ |
| 571 |
|
✗ |
for (c = t->head; c != NULL; c = c->next) |
| 572 |
|
✗ |
t->free_fn(c); |
| 573 |
|
|
} |
| 574 |
|
✗ |
free(t->table); |
| 575 |
|
✗ |
free(t); |
| 576 |
|
|
} |
| 577 |
|
|
|
| 578 |
|
✗ |
int lh_table_insert_w_hash(struct lh_table *t, const void *k, const void *v, const unsigned long h, |
| 579 |
|
|
const unsigned opts) |
| 580 |
|
|
{ |
| 581 |
|
|
unsigned long n; |
| 582 |
|
|
|
| 583 |
|
✗ |
if (t->count >= t->size * LH_LOAD_FACTOR) |
| 584 |
|
|
{ |
| 585 |
|
|
/* Avoid signed integer overflow with large tables. */ |
| 586 |
|
✗ |
int new_size = (t->size > INT_MAX / 2) ? INT_MAX : (t->size * 2); |
| 587 |
|
✗ |
if (t->size == INT_MAX || lh_table_resize(t, new_size) != 0) |
| 588 |
|
✗ |
return -1; |
| 589 |
|
|
} |
| 590 |
|
|
|
| 591 |
|
✗ |
n = h % t->size; |
| 592 |
|
|
|
| 593 |
|
|
while (1) |
| 594 |
|
|
{ |
| 595 |
|
✗ |
if (t->table[n].k == LH_EMPTY || t->table[n].k == LH_FREED) |
| 596 |
|
|
break; |
| 597 |
|
✗ |
if ((int)++n == t->size) |
| 598 |
|
|
n = 0; |
| 599 |
|
|
} |
| 600 |
|
|
|
| 601 |
|
✗ |
t->table[n].k = k; |
| 602 |
|
✗ |
t->table[n].k_is_constant = (opts & JSON_C_OBJECT_ADD_CONSTANT_KEY); |
| 603 |
|
✗ |
t->table[n].v = v; |
| 604 |
|
✗ |
t->count++; |
| 605 |
|
|
|
| 606 |
|
✗ |
if (t->head == NULL) |
| 607 |
|
|
{ |
| 608 |
|
✗ |
t->head = t->tail = &t->table[n]; |
| 609 |
|
✗ |
t->table[n].next = t->table[n].prev = NULL; |
| 610 |
|
|
} |
| 611 |
|
|
else |
| 612 |
|
|
{ |
| 613 |
|
✗ |
t->tail->next = &t->table[n]; |
| 614 |
|
✗ |
t->table[n].prev = t->tail; |
| 615 |
|
✗ |
t->table[n].next = NULL; |
| 616 |
|
✗ |
t->tail = &t->table[n]; |
| 617 |
|
|
} |
| 618 |
|
|
|
| 619 |
|
|
return 0; |
| 620 |
|
|
} |
| 621 |
|
✗ |
int lh_table_insert(struct lh_table *t, const void *k, const void *v) |
| 622 |
|
|
{ |
| 623 |
|
✗ |
return lh_table_insert_w_hash(t, k, v, lh_get_hash(t, k), 0); |
| 624 |
|
|
} |
| 625 |
|
|
|
| 626 |
|
✗ |
struct lh_entry *lh_table_lookup_entry_w_hash(struct lh_table *t, const void *k, |
| 627 |
|
|
const unsigned long h) |
| 628 |
|
|
{ |
| 629 |
|
✗ |
unsigned long n = h % t->size; |
| 630 |
|
|
int count = 0; |
| 631 |
|
|
|
| 632 |
|
✗ |
while (count < t->size) |
| 633 |
|
|
{ |
| 634 |
|
✗ |
if (t->table[n].k == LH_EMPTY) |
| 635 |
|
|
return NULL; |
| 636 |
|
✗ |
if (t->table[n].k != LH_FREED && t->equal_fn(t->table[n].k, k)) |
| 637 |
|
✗ |
return &t->table[n]; |
| 638 |
|
✗ |
if ((int)++n == t->size) |
| 639 |
|
|
n = 0; |
| 640 |
|
✗ |
count++; |
| 641 |
|
|
} |
| 642 |
|
|
return NULL; |
| 643 |
|
|
} |
| 644 |
|
|
|
| 645 |
|
✗ |
struct lh_entry *lh_table_lookup_entry(struct lh_table *t, const void *k) |
| 646 |
|
|
{ |
| 647 |
|
✗ |
return lh_table_lookup_entry_w_hash(t, k, lh_get_hash(t, k)); |
| 648 |
|
|
} |
| 649 |
|
|
|
| 650 |
|
✗ |
json_bool lh_table_lookup_ex(struct lh_table *t, const void *k, void **v) |
| 651 |
|
|
{ |
| 652 |
|
✗ |
struct lh_entry *e = lh_table_lookup_entry(t, k); |
| 653 |
|
✗ |
if (e != NULL) |
| 654 |
|
|
{ |
| 655 |
|
✗ |
if (v != NULL) |
| 656 |
|
✗ |
*v = lh_entry_v(e); |
| 657 |
|
✗ |
return 1; /* key found */ |
| 658 |
|
|
} |
| 659 |
|
✗ |
if (v != NULL) |
| 660 |
|
✗ |
*v = NULL; |
| 661 |
|
|
return 0; /* key not found */ |
| 662 |
|
|
} |
| 663 |
|
|
|
| 664 |
|
✗ |
int lh_table_delete_entry(struct lh_table *t, struct lh_entry *e) |
| 665 |
|
|
{ |
| 666 |
|
|
/* CAW: fixed to be 64bit nice, still need the crazy negative case... */ |
| 667 |
|
✗ |
ptrdiff_t n = (ptrdiff_t)(e - t->table); |
| 668 |
|
|
|
| 669 |
|
|
/* CAW: this is bad, really bad, maybe stack goes other direction on this machine... */ |
| 670 |
|
✗ |
if (n < 0) |
| 671 |
|
|
{ |
| 672 |
|
|
return -2; |
| 673 |
|
|
} |
| 674 |
|
|
|
| 675 |
|
✗ |
if (t->table[n].k == LH_EMPTY || t->table[n].k == LH_FREED) |
| 676 |
|
|
return -1; |
| 677 |
|
✗ |
t->count--; |
| 678 |
|
✗ |
if (t->free_fn) |
| 679 |
|
✗ |
t->free_fn(e); |
| 680 |
|
✗ |
t->table[n].v = NULL; |
| 681 |
|
✗ |
t->table[n].k = LH_FREED; |
| 682 |
|
✗ |
if (t->tail == &t->table[n] && t->head == &t->table[n]) |
| 683 |
|
|
{ |
| 684 |
|
✗ |
t->head = t->tail = NULL; |
| 685 |
|
|
} |
| 686 |
|
✗ |
else if (t->head == &t->table[n]) |
| 687 |
|
|
{ |
| 688 |
|
✗ |
t->head->next->prev = NULL; |
| 689 |
|
✗ |
t->head = t->head->next; |
| 690 |
|
|
} |
| 691 |
|
✗ |
else if (t->tail == &t->table[n]) |
| 692 |
|
|
{ |
| 693 |
|
✗ |
t->tail->prev->next = NULL; |
| 694 |
|
✗ |
t->tail = t->tail->prev; |
| 695 |
|
|
} |
| 696 |
|
|
else |
| 697 |
|
|
{ |
| 698 |
|
✗ |
t->table[n].prev->next = t->table[n].next; |
| 699 |
|
✗ |
t->table[n].next->prev = t->table[n].prev; |
| 700 |
|
|
} |
| 701 |
|
✗ |
t->table[n].next = t->table[n].prev = NULL; |
| 702 |
|
✗ |
return 0; |
| 703 |
|
|
} |
| 704 |
|
|
|
| 705 |
|
✗ |
int lh_table_delete(struct lh_table *t, const void *k) |
| 706 |
|
|
{ |
| 707 |
|
✗ |
struct lh_entry *e = lh_table_lookup_entry(t, k); |
| 708 |
|
✗ |
if (!e) |
| 709 |
|
|
return -1; |
| 710 |
|
✗ |
return lh_table_delete_entry(t, e); |
| 711 |
|
|
} |
| 712 |
|
|
|
| 713 |
|
✗ |
int lh_table_length(struct lh_table *t) |
| 714 |
|
|
{ |
| 715 |
|
✗ |
return t->count; |
| 716 |
|
|
} |
| 717 |
|
|
|