| Line |
Branch |
Exec |
Source |
| 1 |
|
|
/********************************************************************************************** |
| 2 |
|
|
* |
| 3 |
|
|
* raymath v1.5 - Math functions to work with Vector2, Vector3, Matrix and Quaternions |
| 4 |
|
|
* |
| 5 |
|
|
* CONVENTIONS: |
| 6 |
|
|
* - Matrix structure is defined as row-major (memory layout) but parameters naming AND all |
| 7 |
|
|
* math operations performed by the library consider the structure as it was column-major |
| 8 |
|
|
* It is like transposed versions of the matrices are used for all the maths |
| 9 |
|
|
* It benefits some functions making them cache-friendly and also avoids matrix |
| 10 |
|
|
* transpositions sometimes required by OpenGL |
| 11 |
|
|
* Example: In memory order, row0 is [m0 m4 m8 m12] but in semantic math row0 is [m0 m1 m2 m3] |
| 12 |
|
|
* - Functions are always self-contained, no function use another raymath function inside, |
| 13 |
|
|
* required code is directly re-implemented inside |
| 14 |
|
|
* - Functions input parameters are always received by value (2 unavoidable exceptions) |
| 15 |
|
|
* - Functions use always a "result" variable for return |
| 16 |
|
|
* - Functions are always defined inline |
| 17 |
|
|
* - Angles are always in radians (DEG2RAD/RAD2DEG macros provided for convenience) |
| 18 |
|
|
* - No compound literals used to make sure libray is compatible with C++ |
| 19 |
|
|
* |
| 20 |
|
|
* CONFIGURATION: |
| 21 |
|
|
* #define RAYMATH_IMPLEMENTATION |
| 22 |
|
|
* Generates the implementation of the library into the included file. |
| 23 |
|
|
* If not defined, the library is in header only mode and can be included in other headers |
| 24 |
|
|
* or source files without problems. But only ONE file should hold the implementation. |
| 25 |
|
|
* |
| 26 |
|
|
* #define RAYMATH_STATIC_INLINE |
| 27 |
|
|
* Define static inline functions code, so #include header suffices for use. |
| 28 |
|
|
* This may use up lots of memory. |
| 29 |
|
|
* |
| 30 |
|
|
* |
| 31 |
|
|
* LICENSE: zlib/libpng |
| 32 |
|
|
* |
| 33 |
|
|
* Copyright (c) 2015-2023 Ramon Santamaria (@raysan5) |
| 34 |
|
|
* |
| 35 |
|
|
* This software is provided "as-is", without any express or implied warranty. In no event |
| 36 |
|
|
* will the authors be held liable for any damages arising from the use of this software. |
| 37 |
|
|
* |
| 38 |
|
|
* Permission is granted to anyone to use this software for any purpose, including commercial |
| 39 |
|
|
* applications, and to alter it and redistribute it freely, subject to the following restrictions: |
| 40 |
|
|
* |
| 41 |
|
|
* 1. The origin of this software must not be misrepresented; you must not claim that you |
| 42 |
|
|
* wrote the original software. If you use this software in a product, an acknowledgment |
| 43 |
|
|
* in the product documentation would be appreciated but is not required. |
| 44 |
|
|
* |
| 45 |
|
|
* 2. Altered source versions must be plainly marked as such, and must not be misrepresented |
| 46 |
|
|
* as being the original software. |
| 47 |
|
|
* |
| 48 |
|
|
* 3. This notice may not be removed or altered from any source distribution. |
| 49 |
|
|
* |
| 50 |
|
|
**********************************************************************************************/ |
| 51 |
|
|
|
| 52 |
|
|
#ifndef RAYMATH_H |
| 53 |
|
|
#define RAYMATH_H |
| 54 |
|
|
|
| 55 |
|
|
#if defined(RAYMATH_IMPLEMENTATION) && defined(RAYMATH_STATIC_INLINE) |
| 56 |
|
|
#error "Specifying both RAYMATH_IMPLEMENTATION and RAYMATH_STATIC_INLINE is contradictory" |
| 57 |
|
|
#endif |
| 58 |
|
|
|
| 59 |
|
|
// Function specifiers definition |
| 60 |
|
|
#if defined(RAYMATH_IMPLEMENTATION) |
| 61 |
|
|
#if defined(_WIN32) && defined(BUILD_LIBTYPE_SHARED) |
| 62 |
|
|
#define RMAPI __declspec(dllexport) extern inline // We are building raylib as a Win32 shared library (.dll). |
| 63 |
|
|
#elif defined(_WIN32) && defined(USE_LIBTYPE_SHARED) |
| 64 |
|
|
#define RMAPI __declspec(dllimport) // We are using raylib as a Win32 shared library (.dll) |
| 65 |
|
|
#else |
| 66 |
|
|
#define RMAPI extern inline // Provide external definition |
| 67 |
|
|
#endif |
| 68 |
|
|
#elif defined(RAYMATH_STATIC_INLINE) |
| 69 |
|
|
#define RMAPI static inline // Functions may be inlined, no external out-of-line definition |
| 70 |
|
|
#else |
| 71 |
|
|
#if defined(__TINYC__) |
| 72 |
|
|
#define RMAPI static inline // plain inline not supported by tinycc (See issue #435) |
| 73 |
|
|
#else |
| 74 |
|
|
#define RMAPI inline // Functions may be inlined or external definition used |
| 75 |
|
|
#endif |
| 76 |
|
|
#endif |
| 77 |
|
|
|
| 78 |
|
|
//---------------------------------------------------------------------------------- |
| 79 |
|
|
// Defines and Macros |
| 80 |
|
|
//---------------------------------------------------------------------------------- |
| 81 |
|
|
#ifndef PI |
| 82 |
|
|
#define PI 3.14159265358979323846f |
| 83 |
|
|
#endif |
| 84 |
|
|
|
| 85 |
|
|
#ifndef EPSILON |
| 86 |
|
|
#define EPSILON 0.000001f |
| 87 |
|
|
#endif |
| 88 |
|
|
|
| 89 |
|
|
#ifndef DEG2RAD |
| 90 |
|
|
#define DEG2RAD (PI/180.0f) |
| 91 |
|
|
#endif |
| 92 |
|
|
|
| 93 |
|
|
#ifndef RAD2DEG |
| 94 |
|
|
#define RAD2DEG (180.0f/PI) |
| 95 |
|
|
#endif |
| 96 |
|
|
|
| 97 |
|
|
// Get float vector for Matrix |
| 98 |
|
|
#ifndef MatrixToFloat |
| 99 |
|
|
#define MatrixToFloat(mat) (MatrixToFloatV(mat).v) |
| 100 |
|
|
#endif |
| 101 |
|
|
|
| 102 |
|
|
// Get float vector for Vector3 |
| 103 |
|
|
#ifndef Vector3ToFloat |
| 104 |
|
|
#define Vector3ToFloat(vec) (Vector3ToFloatV(vec).v) |
| 105 |
|
|
#endif |
| 106 |
|
|
|
| 107 |
|
|
//---------------------------------------------------------------------------------- |
| 108 |
|
|
// Types and Structures Definition |
| 109 |
|
|
//---------------------------------------------------------------------------------- |
| 110 |
|
|
#if !defined(RL_VECTOR2_TYPE) |
| 111 |
|
|
// Vector2 type |
| 112 |
|
|
typedef struct Vector2 { |
| 113 |
|
|
float x; |
| 114 |
|
|
float y; |
| 115 |
|
|
} Vector2; |
| 116 |
|
|
#define RL_VECTOR2_TYPE |
| 117 |
|
|
#endif |
| 118 |
|
|
|
| 119 |
|
|
#if !defined(RL_VECTOR3_TYPE) |
| 120 |
|
|
// Vector3 type |
| 121 |
|
|
typedef struct Vector3 { |
| 122 |
|
|
float x; |
| 123 |
|
|
float y; |
| 124 |
|
|
float z; |
| 125 |
|
|
} Vector3; |
| 126 |
|
|
#define RL_VECTOR3_TYPE |
| 127 |
|
|
#endif |
| 128 |
|
|
|
| 129 |
|
|
#if !defined(RL_VECTOR4_TYPE) |
| 130 |
|
|
// Vector4 type |
| 131 |
|
|
typedef struct Vector4 { |
| 132 |
|
|
float x; |
| 133 |
|
|
float y; |
| 134 |
|
|
float z; |
| 135 |
|
|
float w; |
| 136 |
|
|
} Vector4; |
| 137 |
|
|
#define RL_VECTOR4_TYPE |
| 138 |
|
|
#endif |
| 139 |
|
|
|
| 140 |
|
|
#if !defined(RL_QUATERNION_TYPE) |
| 141 |
|
|
// Quaternion type |
| 142 |
|
|
typedef Vector4 Quaternion; |
| 143 |
|
|
#define RL_QUATERNION_TYPE |
| 144 |
|
|
#endif |
| 145 |
|
|
|
| 146 |
|
|
#if !defined(RL_MATRIX_TYPE) |
| 147 |
|
|
// Matrix type (OpenGL style 4x4 - right handed, column major) |
| 148 |
|
|
typedef struct Matrix { |
| 149 |
|
|
float m0, m4, m8, m12; // Matrix first row (4 components) |
| 150 |
|
|
float m1, m5, m9, m13; // Matrix second row (4 components) |
| 151 |
|
|
float m2, m6, m10, m14; // Matrix third row (4 components) |
| 152 |
|
|
float m3, m7, m11, m15; // Matrix fourth row (4 components) |
| 153 |
|
|
} Matrix; |
| 154 |
|
|
#define RL_MATRIX_TYPE |
| 155 |
|
|
#endif |
| 156 |
|
|
|
| 157 |
|
|
// NOTE: Helper types to be used instead of array return types for *ToFloat functions |
| 158 |
|
|
typedef struct float3 { |
| 159 |
|
|
float v[3]; |
| 160 |
|
|
} float3; |
| 161 |
|
|
|
| 162 |
|
|
typedef struct float16 { |
| 163 |
|
|
float v[16]; |
| 164 |
|
|
} float16; |
| 165 |
|
|
|
| 166 |
|
|
#include <math.h> // Required for: sinf(), cosf(), tan(), atan2f(), sqrtf(), floor(), fminf(), fmaxf(), fabs() |
| 167 |
|
|
|
| 168 |
|
|
//---------------------------------------------------------------------------------- |
| 169 |
|
|
// Module Functions Definition - Utils math |
| 170 |
|
|
//---------------------------------------------------------------------------------- |
| 171 |
|
|
|
| 172 |
|
|
// Clamp float value |
| 173 |
|
✗ |
RMAPI float Clamp(float value, float min, float max) |
| 174 |
|
|
{ |
| 175 |
|
✗ |
float result = (value < min)? min : value; |
| 176 |
|
|
|
| 177 |
|
✗ |
if (result > max) result = max; |
| 178 |
|
|
|
| 179 |
|
✗ |
return result; |
| 180 |
|
|
} |
| 181 |
|
|
|
| 182 |
|
|
// Calculate linear interpolation between two floats |
| 183 |
|
✗ |
RMAPI float Lerp(float start, float end, float amount) |
| 184 |
|
|
{ |
| 185 |
|
✗ |
float result = start + amount*(end - start); |
| 186 |
|
|
|
| 187 |
|
✗ |
return result; |
| 188 |
|
|
} |
| 189 |
|
|
|
| 190 |
|
|
// Normalize input value within input range |
| 191 |
|
✗ |
RMAPI float Normalize(float value, float start, float end) |
| 192 |
|
|
{ |
| 193 |
|
✗ |
float result = (value - start)/(end - start); |
| 194 |
|
|
|
| 195 |
|
✗ |
return result; |
| 196 |
|
|
} |
| 197 |
|
|
|
| 198 |
|
|
// Remap input value within input range to output range |
| 199 |
|
✗ |
RMAPI float Remap(float value, float inputStart, float inputEnd, float outputStart, float outputEnd) |
| 200 |
|
|
{ |
| 201 |
|
✗ |
float result = (value - inputStart)/(inputEnd - inputStart)*(outputEnd - outputStart) + outputStart; |
| 202 |
|
|
|
| 203 |
|
✗ |
return result; |
| 204 |
|
|
} |
| 205 |
|
|
|
| 206 |
|
|
// Wrap input value from min to max |
| 207 |
|
✗ |
RMAPI float Wrap(float value, float min, float max) |
| 208 |
|
|
{ |
| 209 |
|
✗ |
float result = value - (max - min)*floorf((value - min)/(max - min)); |
| 210 |
|
|
|
| 211 |
|
✗ |
return result; |
| 212 |
|
|
} |
| 213 |
|
|
|
| 214 |
|
|
// Check whether two given floats are almost equal |
| 215 |
|
✗ |
RMAPI int FloatEquals(float x, float y) |
| 216 |
|
|
{ |
| 217 |
|
✗ |
int result = (fabsf(x - y)) <= (EPSILON*fmaxf(1.0f, fmaxf(fabsf(x), fabsf(y)))); |
| 218 |
|
|
|
| 219 |
|
✗ |
return result; |
| 220 |
|
|
} |
| 221 |
|
|
|
| 222 |
|
|
//---------------------------------------------------------------------------------- |
| 223 |
|
|
// Module Functions Definition - Vector2 math |
| 224 |
|
|
//---------------------------------------------------------------------------------- |
| 225 |
|
|
|
| 226 |
|
|
// Vector with components value 0.0f |
| 227 |
|
✗ |
RMAPI Vector2 Vector2Zero(void) |
| 228 |
|
|
{ |
| 229 |
|
|
Vector2 result = { 0.0f, 0.0f }; |
| 230 |
|
|
|
| 231 |
|
✗ |
return result; |
| 232 |
|
|
} |
| 233 |
|
|
|
| 234 |
|
|
// Vector with components value 1.0f |
| 235 |
|
✗ |
RMAPI Vector2 Vector2One(void) |
| 236 |
|
|
{ |
| 237 |
|
|
Vector2 result = { 1.0f, 1.0f }; |
| 238 |
|
|
|
| 239 |
|
✗ |
return result; |
| 240 |
|
|
} |
| 241 |
|
|
|
| 242 |
|
|
// Add two vectors (v1 + v2) |
| 243 |
|
✗ |
RMAPI Vector2 Vector2Add(Vector2 v1, Vector2 v2) |
| 244 |
|
|
{ |
| 245 |
|
✗ |
Vector2 result = { v1.x + v2.x, v1.y + v2.y }; |
| 246 |
|
|
|
| 247 |
|
✗ |
return result; |
| 248 |
|
|
} |
| 249 |
|
|
|
| 250 |
|
|
// Add vector and float value |
| 251 |
|
✗ |
RMAPI Vector2 Vector2AddValue(Vector2 v, float add) |
| 252 |
|
|
{ |
| 253 |
|
✗ |
Vector2 result = { v.x + add, v.y + add }; |
| 254 |
|
|
|
| 255 |
|
✗ |
return result; |
| 256 |
|
|
} |
| 257 |
|
|
|
| 258 |
|
|
// Subtract two vectors (v1 - v2) |
| 259 |
|
✗ |
RMAPI Vector2 Vector2Subtract(Vector2 v1, Vector2 v2) |
| 260 |
|
|
{ |
| 261 |
|
✗ |
Vector2 result = { v1.x - v2.x, v1.y - v2.y }; |
| 262 |
|
|
|
| 263 |
|
✗ |
return result; |
| 264 |
|
|
} |
| 265 |
|
|
|
| 266 |
|
|
// Subtract vector by float value |
| 267 |
|
✗ |
RMAPI Vector2 Vector2SubtractValue(Vector2 v, float sub) |
| 268 |
|
|
{ |
| 269 |
|
✗ |
Vector2 result = { v.x - sub, v.y - sub }; |
| 270 |
|
|
|
| 271 |
|
✗ |
return result; |
| 272 |
|
|
} |
| 273 |
|
|
|
| 274 |
|
|
// Calculate vector length |
| 275 |
|
✗ |
RMAPI float Vector2Length(Vector2 v) |
| 276 |
|
|
{ |
| 277 |
|
✗ |
float result = sqrtf((v.x*v.x) + (v.y*v.y)); |
| 278 |
|
|
|
| 279 |
|
✗ |
return result; |
| 280 |
|
|
} |
| 281 |
|
|
|
| 282 |
|
|
// Calculate vector square length |
| 283 |
|
✗ |
RMAPI float Vector2LengthSqr(Vector2 v) |
| 284 |
|
|
{ |
| 285 |
|
✗ |
float result = (v.x*v.x) + (v.y*v.y); |
| 286 |
|
|
|
| 287 |
|
✗ |
return result; |
| 288 |
|
|
} |
| 289 |
|
|
|
| 290 |
|
|
// Calculate two vectors dot product |
| 291 |
|
✗ |
RMAPI float Vector2DotProduct(Vector2 v1, Vector2 v2) |
| 292 |
|
|
{ |
| 293 |
|
✗ |
float result = (v1.x*v2.x + v1.y*v2.y); |
| 294 |
|
|
|
| 295 |
|
✗ |
return result; |
| 296 |
|
|
} |
| 297 |
|
|
|
| 298 |
|
|
// Calculate distance between two vectors |
| 299 |
|
✗ |
RMAPI float Vector2Distance(Vector2 v1, Vector2 v2) |
| 300 |
|
|
{ |
| 301 |
|
✗ |
float result = sqrtf((v1.x - v2.x)*(v1.x - v2.x) + (v1.y - v2.y)*(v1.y - v2.y)); |
| 302 |
|
|
|
| 303 |
|
✗ |
return result; |
| 304 |
|
|
} |
| 305 |
|
|
|
| 306 |
|
|
// Calculate square distance between two vectors |
| 307 |
|
✗ |
RMAPI float Vector2DistanceSqr(Vector2 v1, Vector2 v2) |
| 308 |
|
|
{ |
| 309 |
|
✗ |
float result = ((v1.x - v2.x)*(v1.x - v2.x) + (v1.y - v2.y)*(v1.y - v2.y)); |
| 310 |
|
|
|
| 311 |
|
✗ |
return result; |
| 312 |
|
|
} |
| 313 |
|
|
|
| 314 |
|
|
// Calculate angle between two vectors |
| 315 |
|
|
// NOTE: Angle is calculated from origin point (0, 0) |
| 316 |
|
✗ |
RMAPI float Vector2Angle(Vector2 v1, Vector2 v2) |
| 317 |
|
|
{ |
| 318 |
|
|
float result = 0.0f; |
| 319 |
|
|
|
| 320 |
|
✗ |
float dot = v1.x*v2.x + v1.y*v2.y; |
| 321 |
|
✗ |
float det = v1.x*v2.y - v1.y*v2.x; |
| 322 |
|
✗ |
result = -atan2f(det, dot); |
| 323 |
|
|
|
| 324 |
|
✗ |
return result; |
| 325 |
|
|
} |
| 326 |
|
|
|
| 327 |
|
|
// Calculate angle defined by a two vectors line |
| 328 |
|
|
// NOTE: Parameters need to be normalized |
| 329 |
|
|
// Current implementation should be aligned with glm::angle |
| 330 |
|
✗ |
RMAPI float Vector2LineAngle(Vector2 start, Vector2 end) |
| 331 |
|
|
{ |
| 332 |
|
|
float result = 0.0f; |
| 333 |
|
|
|
| 334 |
|
✗ |
result = atan2f(end.y - start.y, end.x - start.x); |
| 335 |
|
|
|
| 336 |
|
✗ |
return result; |
| 337 |
|
|
} |
| 338 |
|
|
|
| 339 |
|
|
// Scale vector (multiply by value) |
| 340 |
|
✗ |
RMAPI Vector2 Vector2Scale(Vector2 v, float scale) |
| 341 |
|
|
{ |
| 342 |
|
✗ |
Vector2 result = { v.x*scale, v.y*scale }; |
| 343 |
|
|
|
| 344 |
|
✗ |
return result; |
| 345 |
|
|
} |
| 346 |
|
|
|
| 347 |
|
|
// Multiply vector by vector |
| 348 |
|
✗ |
RMAPI Vector2 Vector2Multiply(Vector2 v1, Vector2 v2) |
| 349 |
|
|
{ |
| 350 |
|
✗ |
Vector2 result = { v1.x*v2.x, v1.y*v2.y }; |
| 351 |
|
|
|
| 352 |
|
✗ |
return result; |
| 353 |
|
|
} |
| 354 |
|
|
|
| 355 |
|
|
// Negate vector |
| 356 |
|
✗ |
RMAPI Vector2 Vector2Negate(Vector2 v) |
| 357 |
|
|
{ |
| 358 |
|
✗ |
Vector2 result = { -v.x, -v.y }; |
| 359 |
|
|
|
| 360 |
|
✗ |
return result; |
| 361 |
|
|
} |
| 362 |
|
|
|
| 363 |
|
|
// Divide vector by vector |
| 364 |
|
✗ |
RMAPI Vector2 Vector2Divide(Vector2 v1, Vector2 v2) |
| 365 |
|
|
{ |
| 366 |
|
✗ |
Vector2 result = { v1.x/v2.x, v1.y/v2.y }; |
| 367 |
|
|
|
| 368 |
|
✗ |
return result; |
| 369 |
|
|
} |
| 370 |
|
|
|
| 371 |
|
|
// Normalize provided vector |
| 372 |
|
✗ |
RMAPI Vector2 Vector2Normalize(Vector2 v) |
| 373 |
|
|
{ |
| 374 |
|
|
Vector2 result = { 0 }; |
| 375 |
|
✗ |
float length = sqrtf((v.x*v.x) + (v.y*v.y)); |
| 376 |
|
|
|
| 377 |
|
✗ |
if (length > 0) |
| 378 |
|
|
{ |
| 379 |
|
✗ |
float ilength = 1.0f/length; |
| 380 |
|
✗ |
result.x = v.x*ilength; |
| 381 |
|
✗ |
result.y = v.y*ilength; |
| 382 |
|
|
} |
| 383 |
|
|
|
| 384 |
|
✗ |
return result; |
| 385 |
|
|
} |
| 386 |
|
|
|
| 387 |
|
|
// Transforms a Vector2 by a given Matrix |
| 388 |
|
✗ |
RMAPI Vector2 Vector2Transform(Vector2 v, Matrix mat) |
| 389 |
|
|
{ |
| 390 |
|
|
Vector2 result = { 0 }; |
| 391 |
|
|
|
| 392 |
|
✗ |
float x = v.x; |
| 393 |
|
✗ |
float y = v.y; |
| 394 |
|
|
float z = 0; |
| 395 |
|
|
|
| 396 |
|
✗ |
result.x = mat.m0*x + mat.m4*y + mat.m8*z + mat.m12; |
| 397 |
|
✗ |
result.y = mat.m1*x + mat.m5*y + mat.m9*z + mat.m13; |
| 398 |
|
|
|
| 399 |
|
✗ |
return result; |
| 400 |
|
|
} |
| 401 |
|
|
|
| 402 |
|
|
// Calculate linear interpolation between two vectors |
| 403 |
|
✗ |
RMAPI Vector2 Vector2Lerp(Vector2 v1, Vector2 v2, float amount) |
| 404 |
|
|
{ |
| 405 |
|
|
Vector2 result = { 0 }; |
| 406 |
|
|
|
| 407 |
|
✗ |
result.x = v1.x + amount*(v2.x - v1.x); |
| 408 |
|
✗ |
result.y = v1.y + amount*(v2.y - v1.y); |
| 409 |
|
|
|
| 410 |
|
✗ |
return result; |
| 411 |
|
|
} |
| 412 |
|
|
|
| 413 |
|
|
// Calculate reflected vector to normal |
| 414 |
|
✗ |
RMAPI Vector2 Vector2Reflect(Vector2 v, Vector2 normal) |
| 415 |
|
|
{ |
| 416 |
|
|
Vector2 result = { 0 }; |
| 417 |
|
|
|
| 418 |
|
✗ |
float dotProduct = (v.x*normal.x + v.y*normal.y); // Dot product |
| 419 |
|
|
|
| 420 |
|
✗ |
result.x = v.x - (2.0f*normal.x)*dotProduct; |
| 421 |
|
✗ |
result.y = v.y - (2.0f*normal.y)*dotProduct; |
| 422 |
|
|
|
| 423 |
|
✗ |
return result; |
| 424 |
|
|
} |
| 425 |
|
|
|
| 426 |
|
|
// Rotate vector by angle |
| 427 |
|
✗ |
RMAPI Vector2 Vector2Rotate(Vector2 v, float angle) |
| 428 |
|
|
{ |
| 429 |
|
|
Vector2 result = { 0 }; |
| 430 |
|
|
|
| 431 |
|
✗ |
float cosres = cosf(angle); |
| 432 |
|
✗ |
float sinres = sinf(angle); |
| 433 |
|
|
|
| 434 |
|
✗ |
result.x = v.x*cosres - v.y*sinres; |
| 435 |
|
✗ |
result.y = v.x*sinres + v.y*cosres; |
| 436 |
|
|
|
| 437 |
|
✗ |
return result; |
| 438 |
|
|
} |
| 439 |
|
|
|
| 440 |
|
|
// Move Vector towards target |
| 441 |
|
✗ |
RMAPI Vector2 Vector2MoveTowards(Vector2 v, Vector2 target, float maxDistance) |
| 442 |
|
|
{ |
| 443 |
|
|
Vector2 result = { 0 }; |
| 444 |
|
|
|
| 445 |
|
✗ |
float dx = target.x - v.x; |
| 446 |
|
✗ |
float dy = target.y - v.y; |
| 447 |
|
✗ |
float value = (dx*dx) + (dy*dy); |
| 448 |
|
|
|
| 449 |
|
✗ |
if ((value == 0) || ((maxDistance >= 0) && (value <= maxDistance*maxDistance))) return target; |
| 450 |
|
|
|
| 451 |
|
✗ |
float dist = sqrtf(value); |
| 452 |
|
|
|
| 453 |
|
✗ |
result.x = v.x + dx/dist*maxDistance; |
| 454 |
|
✗ |
result.y = v.y + dy/dist*maxDistance; |
| 455 |
|
|
|
| 456 |
|
✗ |
return result; |
| 457 |
|
|
} |
| 458 |
|
|
|
| 459 |
|
|
// Invert the given vector |
| 460 |
|
✗ |
RMAPI Vector2 Vector2Invert(Vector2 v) |
| 461 |
|
|
{ |
| 462 |
|
✗ |
Vector2 result = { 1.0f/v.x, 1.0f/v.y }; |
| 463 |
|
|
|
| 464 |
|
✗ |
return result; |
| 465 |
|
|
} |
| 466 |
|
|
|
| 467 |
|
|
// Clamp the components of the vector between |
| 468 |
|
|
// min and max values specified by the given vectors |
| 469 |
|
✗ |
RMAPI Vector2 Vector2Clamp(Vector2 v, Vector2 min, Vector2 max) |
| 470 |
|
|
{ |
| 471 |
|
|
Vector2 result = { 0 }; |
| 472 |
|
|
|
| 473 |
|
✗ |
result.x = fminf(max.x, fmaxf(min.x, v.x)); |
| 474 |
|
✗ |
result.y = fminf(max.y, fmaxf(min.y, v.y)); |
| 475 |
|
|
|
| 476 |
|
✗ |
return result; |
| 477 |
|
|
} |
| 478 |
|
|
|
| 479 |
|
|
// Clamp the magnitude of the vector between two min and max values |
| 480 |
|
✗ |
RMAPI Vector2 Vector2ClampValue(Vector2 v, float min, float max) |
| 481 |
|
|
{ |
| 482 |
|
|
Vector2 result = v; |
| 483 |
|
|
|
| 484 |
|
✗ |
float length = (v.x*v.x) + (v.y*v.y); |
| 485 |
|
✗ |
if (length > 0.0f) |
| 486 |
|
|
{ |
| 487 |
|
✗ |
length = sqrtf(length); |
| 488 |
|
|
|
| 489 |
|
✗ |
if (length < min) |
| 490 |
|
|
{ |
| 491 |
|
✗ |
float scale = min/length; |
| 492 |
|
✗ |
result.x = v.x*scale; |
| 493 |
|
✗ |
result.y = v.y*scale; |
| 494 |
|
|
} |
| 495 |
|
✗ |
else if (length > max) |
| 496 |
|
|
{ |
| 497 |
|
✗ |
float scale = max/length; |
| 498 |
|
✗ |
result.x = v.x*scale; |
| 499 |
|
✗ |
result.y = v.y*scale; |
| 500 |
|
|
} |
| 501 |
|
|
} |
| 502 |
|
|
|
| 503 |
|
✗ |
return result; |
| 504 |
|
|
} |
| 505 |
|
|
|
| 506 |
|
|
// Check whether two given vectors are almost equal |
| 507 |
|
✗ |
RMAPI int Vector2Equals(Vector2 p, Vector2 q) |
| 508 |
|
|
{ |
| 509 |
|
✗ |
int result = ((fabsf(p.x - q.x)) <= (EPSILON*fmaxf(1.0f, fmaxf(fabsf(p.x), fabsf(q.x))))) && |
| 510 |
|
✗ |
((fabsf(p.y - q.y)) <= (EPSILON*fmaxf(1.0f, fmaxf(fabsf(p.y), fabsf(q.y))))); |
| 511 |
|
|
|
| 512 |
|
✗ |
return result; |
| 513 |
|
|
} |
| 514 |
|
|
|
| 515 |
|
|
//---------------------------------------------------------------------------------- |
| 516 |
|
|
// Module Functions Definition - Vector3 math |
| 517 |
|
|
//---------------------------------------------------------------------------------- |
| 518 |
|
|
|
| 519 |
|
|
// Vector with components value 0.0f |
| 520 |
|
✗ |
RMAPI Vector3 Vector3Zero(void) |
| 521 |
|
|
{ |
| 522 |
|
|
Vector3 result = { 0.0f, 0.0f, 0.0f }; |
| 523 |
|
|
|
| 524 |
|
✗ |
return result; |
| 525 |
|
|
} |
| 526 |
|
|
|
| 527 |
|
|
// Vector with components value 1.0f |
| 528 |
|
✗ |
RMAPI Vector3 Vector3One(void) |
| 529 |
|
|
{ |
| 530 |
|
|
Vector3 result = { 1.0f, 1.0f, 1.0f }; |
| 531 |
|
|
|
| 532 |
|
✗ |
return result; |
| 533 |
|
|
} |
| 534 |
|
|
|
| 535 |
|
|
// Add two vectors |
| 536 |
|
✗ |
RMAPI Vector3 Vector3Add(Vector3 v1, Vector3 v2) |
| 537 |
|
|
{ |
| 538 |
|
✗ |
Vector3 result = { v1.x + v2.x, v1.y + v2.y, v1.z + v2.z }; |
| 539 |
|
|
|
| 540 |
|
✗ |
return result; |
| 541 |
|
|
} |
| 542 |
|
|
|
| 543 |
|
|
// Add vector and float value |
| 544 |
|
✗ |
RMAPI Vector3 Vector3AddValue(Vector3 v, float add) |
| 545 |
|
|
{ |
| 546 |
|
✗ |
Vector3 result = { v.x + add, v.y + add, v.z + add }; |
| 547 |
|
|
|
| 548 |
|
✗ |
return result; |
| 549 |
|
|
} |
| 550 |
|
|
|
| 551 |
|
|
// Subtract two vectors |
| 552 |
|
✗ |
RMAPI Vector3 Vector3Subtract(Vector3 v1, Vector3 v2) |
| 553 |
|
|
{ |
| 554 |
|
✗ |
Vector3 result = { v1.x - v2.x, v1.y - v2.y, v1.z - v2.z }; |
| 555 |
|
|
|
| 556 |
|
✗ |
return result; |
| 557 |
|
|
} |
| 558 |
|
|
|
| 559 |
|
|
// Subtract vector by float value |
| 560 |
|
✗ |
RMAPI Vector3 Vector3SubtractValue(Vector3 v, float sub) |
| 561 |
|
|
{ |
| 562 |
|
✗ |
Vector3 result = { v.x - sub, v.y - sub, v.z - sub }; |
| 563 |
|
|
|
| 564 |
|
✗ |
return result; |
| 565 |
|
|
} |
| 566 |
|
|
|
| 567 |
|
|
// Multiply vector by scalar |
| 568 |
|
✗ |
RMAPI Vector3 Vector3Scale(Vector3 v, float scalar) |
| 569 |
|
|
{ |
| 570 |
|
✗ |
Vector3 result = { v.x*scalar, v.y*scalar, v.z*scalar }; |
| 571 |
|
|
|
| 572 |
|
✗ |
return result; |
| 573 |
|
|
} |
| 574 |
|
|
|
| 575 |
|
|
// Multiply vector by vector |
| 576 |
|
✗ |
RMAPI Vector3 Vector3Multiply(Vector3 v1, Vector3 v2) |
| 577 |
|
|
{ |
| 578 |
|
✗ |
Vector3 result = { v1.x*v2.x, v1.y*v2.y, v1.z*v2.z }; |
| 579 |
|
|
|
| 580 |
|
✗ |
return result; |
| 581 |
|
|
} |
| 582 |
|
|
|
| 583 |
|
|
// Calculate two vectors cross product |
| 584 |
|
✗ |
RMAPI Vector3 Vector3CrossProduct(Vector3 v1, Vector3 v2) |
| 585 |
|
|
{ |
| 586 |
|
✗ |
Vector3 result = { v1.y*v2.z - v1.z*v2.y, v1.z*v2.x - v1.x*v2.z, v1.x*v2.y - v1.y*v2.x }; |
| 587 |
|
|
|
| 588 |
|
✗ |
return result; |
| 589 |
|
|
} |
| 590 |
|
|
|
| 591 |
|
|
// Calculate one vector perpendicular vector |
| 592 |
|
✗ |
RMAPI Vector3 Vector3Perpendicular(Vector3 v) |
| 593 |
|
|
{ |
| 594 |
|
|
Vector3 result = { 0 }; |
| 595 |
|
|
|
| 596 |
|
✗ |
float min = (float) fabs(v.x); |
| 597 |
|
|
Vector3 cardinalAxis = {1.0f, 0.0f, 0.0f}; |
| 598 |
|
|
|
| 599 |
|
✗ |
if (fabsf(v.y) < min) |
| 600 |
|
|
{ |
| 601 |
|
|
min = (float) fabs(v.y); |
| 602 |
|
|
Vector3 tmp = {0.0f, 1.0f, 0.0f}; |
| 603 |
|
|
cardinalAxis = tmp; |
| 604 |
|
|
} |
| 605 |
|
|
|
| 606 |
|
✗ |
if (fabsf(v.z) < min) |
| 607 |
|
|
{ |
| 608 |
|
|
Vector3 tmp = {0.0f, 0.0f, 1.0f}; |
| 609 |
|
|
cardinalAxis = tmp; |
| 610 |
|
|
} |
| 611 |
|
|
|
| 612 |
|
|
// Cross product between vectors |
| 613 |
|
✗ |
result.x = v.y*cardinalAxis.z - v.z*cardinalAxis.y; |
| 614 |
|
✗ |
result.y = v.z*cardinalAxis.x - v.x*cardinalAxis.z; |
| 615 |
|
✗ |
result.z = v.x*cardinalAxis.y - v.y*cardinalAxis.x; |
| 616 |
|
|
|
| 617 |
|
✗ |
return result; |
| 618 |
|
|
} |
| 619 |
|
|
|
| 620 |
|
|
// Calculate vector length |
| 621 |
|
✗ |
RMAPI float Vector3Length(const Vector3 v) |
| 622 |
|
|
{ |
| 623 |
|
✗ |
float result = sqrtf(v.x*v.x + v.y*v.y + v.z*v.z); |
| 624 |
|
|
|
| 625 |
|
✗ |
return result; |
| 626 |
|
|
} |
| 627 |
|
|
|
| 628 |
|
|
// Calculate vector square length |
| 629 |
|
✗ |
RMAPI float Vector3LengthSqr(const Vector3 v) |
| 630 |
|
|
{ |
| 631 |
|
✗ |
float result = v.x*v.x + v.y*v.y + v.z*v.z; |
| 632 |
|
|
|
| 633 |
|
✗ |
return result; |
| 634 |
|
|
} |
| 635 |
|
|
|
| 636 |
|
|
// Calculate two vectors dot product |
| 637 |
|
✗ |
RMAPI float Vector3DotProduct(Vector3 v1, Vector3 v2) |
| 638 |
|
|
{ |
| 639 |
|
✗ |
float result = (v1.x*v2.x + v1.y*v2.y + v1.z*v2.z); |
| 640 |
|
|
|
| 641 |
|
✗ |
return result; |
| 642 |
|
|
} |
| 643 |
|
|
|
| 644 |
|
|
// Calculate distance between two vectors |
| 645 |
|
✗ |
RMAPI float Vector3Distance(Vector3 v1, Vector3 v2) |
| 646 |
|
|
{ |
| 647 |
|
|
float result = 0.0f; |
| 648 |
|
|
|
| 649 |
|
✗ |
float dx = v2.x - v1.x; |
| 650 |
|
✗ |
float dy = v2.y - v1.y; |
| 651 |
|
✗ |
float dz = v2.z - v1.z; |
| 652 |
|
✗ |
result = sqrtf(dx*dx + dy*dy + dz*dz); |
| 653 |
|
|
|
| 654 |
|
✗ |
return result; |
| 655 |
|
|
} |
| 656 |
|
|
|
| 657 |
|
|
// Calculate square distance between two vectors |
| 658 |
|
✗ |
RMAPI float Vector3DistanceSqr(Vector3 v1, Vector3 v2) |
| 659 |
|
|
{ |
| 660 |
|
|
float result = 0.0f; |
| 661 |
|
|
|
| 662 |
|
✗ |
float dx = v2.x - v1.x; |
| 663 |
|
✗ |
float dy = v2.y - v1.y; |
| 664 |
|
✗ |
float dz = v2.z - v1.z; |
| 665 |
|
✗ |
result = dx*dx + dy*dy + dz*dz; |
| 666 |
|
|
|
| 667 |
|
✗ |
return result; |
| 668 |
|
|
} |
| 669 |
|
|
|
| 670 |
|
|
// Calculate angle between two vectors |
| 671 |
|
✗ |
RMAPI float Vector3Angle(Vector3 v1, Vector3 v2) |
| 672 |
|
|
{ |
| 673 |
|
|
float result = 0.0f; |
| 674 |
|
|
|
| 675 |
|
✗ |
Vector3 cross = { v1.y*v2.z - v1.z*v2.y, v1.z*v2.x - v1.x*v2.z, v1.x*v2.y - v1.y*v2.x }; |
| 676 |
|
✗ |
float len = sqrtf(cross.x*cross.x + cross.y*cross.y + cross.z*cross.z); |
| 677 |
|
✗ |
float dot = (v1.x*v2.x + v1.y*v2.y + v1.z*v2.z); |
| 678 |
|
✗ |
result = atan2f(len, dot); |
| 679 |
|
|
|
| 680 |
|
✗ |
return result; |
| 681 |
|
|
} |
| 682 |
|
|
|
| 683 |
|
|
// Negate provided vector (invert direction) |
| 684 |
|
✗ |
RMAPI Vector3 Vector3Negate(Vector3 v) |
| 685 |
|
|
{ |
| 686 |
|
✗ |
Vector3 result = { -v.x, -v.y, -v.z }; |
| 687 |
|
|
|
| 688 |
|
✗ |
return result; |
| 689 |
|
|
} |
| 690 |
|
|
|
| 691 |
|
|
// Divide vector by vector |
| 692 |
|
✗ |
RMAPI Vector3 Vector3Divide(Vector3 v1, Vector3 v2) |
| 693 |
|
|
{ |
| 694 |
|
✗ |
Vector3 result = { v1.x/v2.x, v1.y/v2.y, v1.z/v2.z }; |
| 695 |
|
|
|
| 696 |
|
✗ |
return result; |
| 697 |
|
|
} |
| 698 |
|
|
|
| 699 |
|
|
// Normalize provided vector |
| 700 |
|
✗ |
RMAPI Vector3 Vector3Normalize(Vector3 v) |
| 701 |
|
|
{ |
| 702 |
|
|
Vector3 result = v; |
| 703 |
|
|
|
| 704 |
|
✗ |
float length = sqrtf(v.x*v.x + v.y*v.y + v.z*v.z); |
| 705 |
|
✗ |
if (length != 0.0f) |
| 706 |
|
|
{ |
| 707 |
|
✗ |
float ilength = 1.0f/length; |
| 708 |
|
|
|
| 709 |
|
✗ |
result.x *= ilength; |
| 710 |
|
✗ |
result.y *= ilength; |
| 711 |
|
✗ |
result.z *= ilength; |
| 712 |
|
|
} |
| 713 |
|
|
|
| 714 |
|
✗ |
return result; |
| 715 |
|
|
} |
| 716 |
|
|
|
| 717 |
|
|
//Calculate the projection of the vector v1 on to v2 |
| 718 |
|
✗ |
RMAPI Vector3 Vector3Project(Vector3 v1, Vector3 v2) |
| 719 |
|
|
{ |
| 720 |
|
|
Vector3 result = { 0 }; |
| 721 |
|
|
|
| 722 |
|
✗ |
float v1dv2 = (v1.x*v2.x + v1.y*v2.y + v1.z*v2.z); |
| 723 |
|
✗ |
float v2dv2 = (v2.x*v2.x + v2.y*v2.y + v2.z*v2.z); |
| 724 |
|
|
|
| 725 |
|
✗ |
float mag = v1dv2/v2dv2; |
| 726 |
|
|
|
| 727 |
|
✗ |
result.x = v2.x*mag; |
| 728 |
|
✗ |
result.y = v2.y*mag; |
| 729 |
|
✗ |
result.z = v2.z*mag; |
| 730 |
|
|
|
| 731 |
|
✗ |
return result; |
| 732 |
|
|
} |
| 733 |
|
|
|
| 734 |
|
|
//Calculate the rejection of the vector v1 on to v2 |
| 735 |
|
✗ |
RMAPI Vector3 Vector3Reject(Vector3 v1, Vector3 v2) |
| 736 |
|
|
{ |
| 737 |
|
|
Vector3 result = { 0 }; |
| 738 |
|
|
|
| 739 |
|
✗ |
float v1dv2 = (v1.x*v2.x + v1.y*v2.y + v1.z*v2.z); |
| 740 |
|
✗ |
float v2dv2 = (v2.x*v2.x + v2.y*v2.y + v2.z*v2.z); |
| 741 |
|
|
|
| 742 |
|
✗ |
float mag = v1dv2/v2dv2; |
| 743 |
|
|
|
| 744 |
|
✗ |
result.x = v1.x - (v2.x*mag); |
| 745 |
|
✗ |
result.y = v1.y - (v2.y*mag); |
| 746 |
|
✗ |
result.z = v1.z - (v2.z*mag); |
| 747 |
|
|
|
| 748 |
|
✗ |
return result; |
| 749 |
|
|
} |
| 750 |
|
|
|
| 751 |
|
|
// Orthonormalize provided vectors |
| 752 |
|
|
// Makes vectors normalized and orthogonal to each other |
| 753 |
|
|
// Gram-Schmidt function implementation |
| 754 |
|
✗ |
RMAPI void Vector3OrthoNormalize(Vector3 *v1, Vector3 *v2) |
| 755 |
|
|
{ |
| 756 |
|
|
float length = 0.0f; |
| 757 |
|
|
float ilength = 0.0f; |
| 758 |
|
|
|
| 759 |
|
|
// Vector3Normalize(*v1); |
| 760 |
|
✗ |
Vector3 v = *v1; |
| 761 |
|
✗ |
length = sqrtf(v.x*v.x + v.y*v.y + v.z*v.z); |
| 762 |
|
✗ |
if (length == 0.0f) length = 1.0f; |
| 763 |
|
✗ |
ilength = 1.0f/length; |
| 764 |
|
✗ |
v1->x *= ilength; |
| 765 |
|
✗ |
v1->y *= ilength; |
| 766 |
|
✗ |
v1->z *= ilength; |
| 767 |
|
|
|
| 768 |
|
|
// Vector3CrossProduct(*v1, *v2) |
| 769 |
|
✗ |
Vector3 vn1 = { v1->y*v2->z - v1->z*v2->y, v1->z*v2->x - v1->x*v2->z, v1->x*v2->y - v1->y*v2->x }; |
| 770 |
|
|
|
| 771 |
|
|
// Vector3Normalize(vn1); |
| 772 |
|
|
v = vn1; |
| 773 |
|
✗ |
length = sqrtf(v.x*v.x + v.y*v.y + v.z*v.z); |
| 774 |
|
✗ |
if (length == 0.0f) length = 1.0f; |
| 775 |
|
✗ |
ilength = 1.0f/length; |
| 776 |
|
✗ |
vn1.x *= ilength; |
| 777 |
|
✗ |
vn1.y *= ilength; |
| 778 |
|
✗ |
vn1.z *= ilength; |
| 779 |
|
|
|
| 780 |
|
|
// Vector3CrossProduct(vn1, *v1) |
| 781 |
|
✗ |
Vector3 vn2 = { vn1.y*v1->z - vn1.z*v1->y, vn1.z*v1->x - vn1.x*v1->z, vn1.x*v1->y - vn1.y*v1->x }; |
| 782 |
|
|
|
| 783 |
|
✗ |
*v2 = vn2; |
| 784 |
|
|
} |
| 785 |
|
|
|
| 786 |
|
|
// Transforms a Vector3 by a given Matrix |
| 787 |
|
✗ |
RMAPI Vector3 Vector3Transform(Vector3 v, Matrix mat) |
| 788 |
|
|
{ |
| 789 |
|
|
Vector3 result = { 0 }; |
| 790 |
|
|
|
| 791 |
|
✗ |
float x = v.x; |
| 792 |
|
✗ |
float y = v.y; |
| 793 |
|
✗ |
float z = v.z; |
| 794 |
|
|
|
| 795 |
|
✗ |
result.x = mat.m0*x + mat.m4*y + mat.m8*z + mat.m12; |
| 796 |
|
✗ |
result.y = mat.m1*x + mat.m5*y + mat.m9*z + mat.m13; |
| 797 |
|
✗ |
result.z = mat.m2*x + mat.m6*y + mat.m10*z + mat.m14; |
| 798 |
|
|
|
| 799 |
|
✗ |
return result; |
| 800 |
|
|
} |
| 801 |
|
|
|
| 802 |
|
|
// Transform a vector by quaternion rotation |
| 803 |
|
✗ |
RMAPI Vector3 Vector3RotateByQuaternion(Vector3 v, Quaternion q) |
| 804 |
|
|
{ |
| 805 |
|
|
Vector3 result = { 0 }; |
| 806 |
|
|
|
| 807 |
|
✗ |
result.x = v.x*(q.x*q.x + q.w*q.w - q.y*q.y - q.z*q.z) + v.y*(2*q.x*q.y - 2*q.w*q.z) + v.z*(2*q.x*q.z + 2*q.w*q.y); |
| 808 |
|
✗ |
result.y = v.x*(2*q.w*q.z + 2*q.x*q.y) + v.y*(q.w*q.w - q.x*q.x + q.y*q.y - q.z*q.z) + v.z*(-2*q.w*q.x + 2*q.y*q.z); |
| 809 |
|
✗ |
result.z = v.x*(-2*q.w*q.y + 2*q.x*q.z) + v.y*(2*q.w*q.x + 2*q.y*q.z)+ v.z*(q.w*q.w - q.x*q.x - q.y*q.y + q.z*q.z); |
| 810 |
|
|
|
| 811 |
|
✗ |
return result; |
| 812 |
|
|
} |
| 813 |
|
|
|
| 814 |
|
|
// Rotates a vector around an axis |
| 815 |
|
✗ |
RMAPI Vector3 Vector3RotateByAxisAngle(Vector3 v, Vector3 axis, float angle) |
| 816 |
|
|
{ |
| 817 |
|
|
// Using Euler-Rodrigues Formula |
| 818 |
|
|
// Ref.: https://en.wikipedia.org/w/index.php?title=Euler%E2%80%93Rodrigues_formula |
| 819 |
|
|
|
| 820 |
|
|
Vector3 result = v; |
| 821 |
|
|
|
| 822 |
|
|
// Vector3Normalize(axis); |
| 823 |
|
✗ |
float length = sqrtf(axis.x * axis.x + axis.y * axis.y + axis.z * axis.z); |
| 824 |
|
✗ |
if (length == 0.0f) length = 1.0f; |
| 825 |
|
✗ |
float ilength = 1.0f / length; |
| 826 |
|
✗ |
axis.x *= ilength; |
| 827 |
|
✗ |
axis.y *= ilength; |
| 828 |
|
✗ |
axis.z *= ilength; |
| 829 |
|
|
|
| 830 |
|
✗ |
angle /= 2.0f; |
| 831 |
|
✗ |
float a = sinf(angle); |
| 832 |
|
✗ |
float b = axis.x * a; |
| 833 |
|
✗ |
float c = axis.y * a; |
| 834 |
|
✗ |
float d = axis.z * a; |
| 835 |
|
✗ |
a = cosf(angle); |
| 836 |
|
|
Vector3 w = { b, c, d }; |
| 837 |
|
|
|
| 838 |
|
|
// Vector3CrossProduct(w, v) |
| 839 |
|
✗ |
Vector3 wv = { w.y * v.z - w.z * v.y, w.z * v.x - w.x * v.z, w.x * v.y - w.y * v.x }; |
| 840 |
|
|
|
| 841 |
|
|
// Vector3CrossProduct(w, wv) |
| 842 |
|
✗ |
Vector3 wwv = { w.y * wv.z - w.z * wv.y, w.z * wv.x - w.x * wv.z, w.x * wv.y - w.y * wv.x }; |
| 843 |
|
|
|
| 844 |
|
|
// Vector3Scale(wv, 2 * a) |
| 845 |
|
✗ |
a *= 2; |
| 846 |
|
✗ |
wv.x *= a; |
| 847 |
|
✗ |
wv.y *= a; |
| 848 |
|
✗ |
wv.z *= a; |
| 849 |
|
|
|
| 850 |
|
|
// Vector3Scale(wwv, 2) |
| 851 |
|
✗ |
wwv.x *= 2; |
| 852 |
|
✗ |
wwv.y *= 2; |
| 853 |
|
✗ |
wwv.z *= 2; |
| 854 |
|
|
|
| 855 |
|
✗ |
result.x += wv.x; |
| 856 |
|
✗ |
result.y += wv.y; |
| 857 |
|
✗ |
result.z += wv.z; |
| 858 |
|
|
|
| 859 |
|
✗ |
result.x += wwv.x; |
| 860 |
|
✗ |
result.y += wwv.y; |
| 861 |
|
✗ |
result.z += wwv.z; |
| 862 |
|
|
|
| 863 |
|
✗ |
return result; |
| 864 |
|
|
} |
| 865 |
|
|
|
| 866 |
|
|
// Calculate linear interpolation between two vectors |
| 867 |
|
✗ |
RMAPI Vector3 Vector3Lerp(Vector3 v1, Vector3 v2, float amount) |
| 868 |
|
|
{ |
| 869 |
|
|
Vector3 result = { 0 }; |
| 870 |
|
|
|
| 871 |
|
✗ |
result.x = v1.x + amount*(v2.x - v1.x); |
| 872 |
|
✗ |
result.y = v1.y + amount*(v2.y - v1.y); |
| 873 |
|
✗ |
result.z = v1.z + amount*(v2.z - v1.z); |
| 874 |
|
|
|
| 875 |
|
✗ |
return result; |
| 876 |
|
|
} |
| 877 |
|
|
|
| 878 |
|
|
// Calculate reflected vector to normal |
| 879 |
|
✗ |
RMAPI Vector3 Vector3Reflect(Vector3 v, Vector3 normal) |
| 880 |
|
|
{ |
| 881 |
|
|
Vector3 result = { 0 }; |
| 882 |
|
|
|
| 883 |
|
|
// I is the original vector |
| 884 |
|
|
// N is the normal of the incident plane |
| 885 |
|
|
// R = I - (2*N*(DotProduct[I, N])) |
| 886 |
|
|
|
| 887 |
|
✗ |
float dotProduct = (v.x*normal.x + v.y*normal.y + v.z*normal.z); |
| 888 |
|
|
|
| 889 |
|
✗ |
result.x = v.x - (2.0f*normal.x)*dotProduct; |
| 890 |
|
✗ |
result.y = v.y - (2.0f*normal.y)*dotProduct; |
| 891 |
|
✗ |
result.z = v.z - (2.0f*normal.z)*dotProduct; |
| 892 |
|
|
|
| 893 |
|
✗ |
return result; |
| 894 |
|
|
} |
| 895 |
|
|
|
| 896 |
|
|
// Get min value for each pair of components |
| 897 |
|
✗ |
RMAPI Vector3 Vector3Min(Vector3 v1, Vector3 v2) |
| 898 |
|
|
{ |
| 899 |
|
|
Vector3 result = { 0 }; |
| 900 |
|
|
|
| 901 |
|
✗ |
result.x = fminf(v1.x, v2.x); |
| 902 |
|
✗ |
result.y = fminf(v1.y, v2.y); |
| 903 |
|
✗ |
result.z = fminf(v1.z, v2.z); |
| 904 |
|
|
|
| 905 |
|
✗ |
return result; |
| 906 |
|
|
} |
| 907 |
|
|
|
| 908 |
|
|
// Get max value for each pair of components |
| 909 |
|
✗ |
RMAPI Vector3 Vector3Max(Vector3 v1, Vector3 v2) |
| 910 |
|
|
{ |
| 911 |
|
|
Vector3 result = { 0 }; |
| 912 |
|
|
|
| 913 |
|
✗ |
result.x = fmaxf(v1.x, v2.x); |
| 914 |
|
✗ |
result.y = fmaxf(v1.y, v2.y); |
| 915 |
|
✗ |
result.z = fmaxf(v1.z, v2.z); |
| 916 |
|
|
|
| 917 |
|
✗ |
return result; |
| 918 |
|
|
} |
| 919 |
|
|
|
| 920 |
|
|
// Compute barycenter coordinates (u, v, w) for point p with respect to triangle (a, b, c) |
| 921 |
|
|
// NOTE: Assumes P is on the plane of the triangle |
| 922 |
|
✗ |
RMAPI Vector3 Vector3Barycenter(Vector3 p, Vector3 a, Vector3 b, Vector3 c) |
| 923 |
|
|
{ |
| 924 |
|
|
Vector3 result = { 0 }; |
| 925 |
|
|
|
| 926 |
|
✗ |
Vector3 v0 = { b.x - a.x, b.y - a.y, b.z - a.z }; // Vector3Subtract(b, a) |
| 927 |
|
✗ |
Vector3 v1 = { c.x - a.x, c.y - a.y, c.z - a.z }; // Vector3Subtract(c, a) |
| 928 |
|
✗ |
Vector3 v2 = { p.x - a.x, p.y - a.y, p.z - a.z }; // Vector3Subtract(p, a) |
| 929 |
|
✗ |
float d00 = (v0.x*v0.x + v0.y*v0.y + v0.z*v0.z); // Vector3DotProduct(v0, v0) |
| 930 |
|
✗ |
float d01 = (v0.x*v1.x + v0.y*v1.y + v0.z*v1.z); // Vector3DotProduct(v0, v1) |
| 931 |
|
✗ |
float d11 = (v1.x*v1.x + v1.y*v1.y + v1.z*v1.z); // Vector3DotProduct(v1, v1) |
| 932 |
|
✗ |
float d20 = (v2.x*v0.x + v2.y*v0.y + v2.z*v0.z); // Vector3DotProduct(v2, v0) |
| 933 |
|
✗ |
float d21 = (v2.x*v1.x + v2.y*v1.y + v2.z*v1.z); // Vector3DotProduct(v2, v1) |
| 934 |
|
|
|
| 935 |
|
✗ |
float denom = d00*d11 - d01*d01; |
| 936 |
|
|
|
| 937 |
|
✗ |
result.y = (d11*d20 - d01*d21)/denom; |
| 938 |
|
✗ |
result.z = (d00*d21 - d01*d20)/denom; |
| 939 |
|
✗ |
result.x = 1.0f - (result.z + result.y); |
| 940 |
|
|
|
| 941 |
|
✗ |
return result; |
| 942 |
|
|
} |
| 943 |
|
|
|
| 944 |
|
|
// Projects a Vector3 from screen space into object space |
| 945 |
|
|
// NOTE: We are avoiding calling other raymath functions despite available |
| 946 |
|
✗ |
RMAPI Vector3 Vector3Unproject(Vector3 source, Matrix projection, Matrix view) |
| 947 |
|
|
{ |
| 948 |
|
|
Vector3 result = { 0 }; |
| 949 |
|
|
|
| 950 |
|
|
// Calculate unprojected matrix (multiply view matrix by projection matrix) and invert it |
| 951 |
|
|
Matrix matViewProj = { // MatrixMultiply(view, projection); |
| 952 |
|
✗ |
view.m0*projection.m0 + view.m1*projection.m4 + view.m2*projection.m8 + view.m3*projection.m12, |
| 953 |
|
✗ |
view.m0*projection.m1 + view.m1*projection.m5 + view.m2*projection.m9 + view.m3*projection.m13, |
| 954 |
|
✗ |
view.m0*projection.m2 + view.m1*projection.m6 + view.m2*projection.m10 + view.m3*projection.m14, |
| 955 |
|
✗ |
view.m0*projection.m3 + view.m1*projection.m7 + view.m2*projection.m11 + view.m3*projection.m15, |
| 956 |
|
✗ |
view.m4*projection.m0 + view.m5*projection.m4 + view.m6*projection.m8 + view.m7*projection.m12, |
| 957 |
|
✗ |
view.m4*projection.m1 + view.m5*projection.m5 + view.m6*projection.m9 + view.m7*projection.m13, |
| 958 |
|
✗ |
view.m4*projection.m2 + view.m5*projection.m6 + view.m6*projection.m10 + view.m7*projection.m14, |
| 959 |
|
✗ |
view.m4*projection.m3 + view.m5*projection.m7 + view.m6*projection.m11 + view.m7*projection.m15, |
| 960 |
|
✗ |
view.m8*projection.m0 + view.m9*projection.m4 + view.m10*projection.m8 + view.m11*projection.m12, |
| 961 |
|
✗ |
view.m8*projection.m1 + view.m9*projection.m5 + view.m10*projection.m9 + view.m11*projection.m13, |
| 962 |
|
✗ |
view.m8*projection.m2 + view.m9*projection.m6 + view.m10*projection.m10 + view.m11*projection.m14, |
| 963 |
|
✗ |
view.m8*projection.m3 + view.m9*projection.m7 + view.m10*projection.m11 + view.m11*projection.m15, |
| 964 |
|
✗ |
view.m12*projection.m0 + view.m13*projection.m4 + view.m14*projection.m8 + view.m15*projection.m12, |
| 965 |
|
✗ |
view.m12*projection.m1 + view.m13*projection.m5 + view.m14*projection.m9 + view.m15*projection.m13, |
| 966 |
|
✗ |
view.m12*projection.m2 + view.m13*projection.m6 + view.m14*projection.m10 + view.m15*projection.m14, |
| 967 |
|
✗ |
view.m12*projection.m3 + view.m13*projection.m7 + view.m14*projection.m11 + view.m15*projection.m15 }; |
| 968 |
|
|
|
| 969 |
|
|
// Calculate inverted matrix -> MatrixInvert(matViewProj); |
| 970 |
|
|
// Cache the matrix values (speed optimization) |
| 971 |
|
|
float a00 = matViewProj.m0, a01 = matViewProj.m1, a02 = matViewProj.m2, a03 = matViewProj.m3; |
| 972 |
|
|
float a10 = matViewProj.m4, a11 = matViewProj.m5, a12 = matViewProj.m6, a13 = matViewProj.m7; |
| 973 |
|
|
float a20 = matViewProj.m8, a21 = matViewProj.m9, a22 = matViewProj.m10, a23 = matViewProj.m11; |
| 974 |
|
|
float a30 = matViewProj.m12, a31 = matViewProj.m13, a32 = matViewProj.m14, a33 = matViewProj.m15; |
| 975 |
|
|
|
| 976 |
|
✗ |
float b00 = a00*a11 - a01*a10; |
| 977 |
|
✗ |
float b01 = a00*a12 - a02*a10; |
| 978 |
|
✗ |
float b02 = a00*a13 - a03*a10; |
| 979 |
|
✗ |
float b03 = a01*a12 - a02*a11; |
| 980 |
|
✗ |
float b04 = a01*a13 - a03*a11; |
| 981 |
|
✗ |
float b05 = a02*a13 - a03*a12; |
| 982 |
|
✗ |
float b06 = a20*a31 - a21*a30; |
| 983 |
|
✗ |
float b07 = a20*a32 - a22*a30; |
| 984 |
|
✗ |
float b08 = a20*a33 - a23*a30; |
| 985 |
|
✗ |
float b09 = a21*a32 - a22*a31; |
| 986 |
|
✗ |
float b10 = a21*a33 - a23*a31; |
| 987 |
|
✗ |
float b11 = a22*a33 - a23*a32; |
| 988 |
|
|
|
| 989 |
|
|
// Calculate the invert determinant (inlined to avoid double-caching) |
| 990 |
|
✗ |
float invDet = 1.0f/(b00*b11 - b01*b10 + b02*b09 + b03*b08 - b04*b07 + b05*b06); |
| 991 |
|
|
|
| 992 |
|
|
Matrix matViewProjInv = { |
| 993 |
|
✗ |
(a11*b11 - a12*b10 + a13*b09)*invDet, |
| 994 |
|
✗ |
(-a01*b11 + a02*b10 - a03*b09)*invDet, |
| 995 |
|
✗ |
(a31*b05 - a32*b04 + a33*b03)*invDet, |
| 996 |
|
✗ |
(-a21*b05 + a22*b04 - a23*b03)*invDet, |
| 997 |
|
✗ |
(-a10*b11 + a12*b08 - a13*b07)*invDet, |
| 998 |
|
✗ |
(a00*b11 - a02*b08 + a03*b07)*invDet, |
| 999 |
|
✗ |
(-a30*b05 + a32*b02 - a33*b01)*invDet, |
| 1000 |
|
✗ |
(a20*b05 - a22*b02 + a23*b01)*invDet, |
| 1001 |
|
✗ |
(a10*b10 - a11*b08 + a13*b06)*invDet, |
| 1002 |
|
✗ |
(-a00*b10 + a01*b08 - a03*b06)*invDet, |
| 1003 |
|
✗ |
(a30*b04 - a31*b02 + a33*b00)*invDet, |
| 1004 |
|
✗ |
(-a20*b04 + a21*b02 - a23*b00)*invDet, |
| 1005 |
|
✗ |
(-a10*b09 + a11*b07 - a12*b06)*invDet, |
| 1006 |
|
✗ |
(a00*b09 - a01*b07 + a02*b06)*invDet, |
| 1007 |
|
✗ |
(-a30*b03 + a31*b01 - a32*b00)*invDet, |
| 1008 |
|
✗ |
(a20*b03 - a21*b01 + a22*b00)*invDet }; |
| 1009 |
|
|
|
| 1010 |
|
|
// Create quaternion from source point |
| 1011 |
|
✗ |
Quaternion quat = { source.x, source.y, source.z, 1.0f }; |
| 1012 |
|
|
|
| 1013 |
|
|
// Multiply quat point by unprojecte matrix |
| 1014 |
|
|
Quaternion qtransformed = { // QuaternionTransform(quat, matViewProjInv) |
| 1015 |
|
✗ |
matViewProjInv.m0*quat.x + matViewProjInv.m4*quat.y + matViewProjInv.m8*quat.z + matViewProjInv.m12*quat.w, |
| 1016 |
|
✗ |
matViewProjInv.m1*quat.x + matViewProjInv.m5*quat.y + matViewProjInv.m9*quat.z + matViewProjInv.m13*quat.w, |
| 1017 |
|
✗ |
matViewProjInv.m2*quat.x + matViewProjInv.m6*quat.y + matViewProjInv.m10*quat.z + matViewProjInv.m14*quat.w, |
| 1018 |
|
✗ |
matViewProjInv.m3*quat.x + matViewProjInv.m7*quat.y + matViewProjInv.m11*quat.z + matViewProjInv.m15*quat.w }; |
| 1019 |
|
|
|
| 1020 |
|
|
// Normalized world points in vectors |
| 1021 |
|
✗ |
result.x = qtransformed.x/qtransformed.w; |
| 1022 |
|
✗ |
result.y = qtransformed.y/qtransformed.w; |
| 1023 |
|
✗ |
result.z = qtransformed.z/qtransformed.w; |
| 1024 |
|
|
|
| 1025 |
|
✗ |
return result; |
| 1026 |
|
|
} |
| 1027 |
|
|
|
| 1028 |
|
|
// Get Vector3 as float array |
| 1029 |
|
✗ |
RMAPI float3 Vector3ToFloatV(Vector3 v) |
| 1030 |
|
|
{ |
| 1031 |
|
|
float3 buffer = { 0 }; |
| 1032 |
|
|
|
| 1033 |
|
✗ |
buffer.v[0] = v.x; |
| 1034 |
|
✗ |
buffer.v[1] = v.y; |
| 1035 |
|
✗ |
buffer.v[2] = v.z; |
| 1036 |
|
|
|
| 1037 |
|
✗ |
return buffer; |
| 1038 |
|
|
} |
| 1039 |
|
|
|
| 1040 |
|
|
// Invert the given vector |
| 1041 |
|
✗ |
RMAPI Vector3 Vector3Invert(Vector3 v) |
| 1042 |
|
|
{ |
| 1043 |
|
✗ |
Vector3 result = { 1.0f/v.x, 1.0f/v.y, 1.0f/v.z }; |
| 1044 |
|
|
|
| 1045 |
|
✗ |
return result; |
| 1046 |
|
|
} |
| 1047 |
|
|
|
| 1048 |
|
|
// Clamp the components of the vector between |
| 1049 |
|
|
// min and max values specified by the given vectors |
| 1050 |
|
✗ |
RMAPI Vector3 Vector3Clamp(Vector3 v, Vector3 min, Vector3 max) |
| 1051 |
|
|
{ |
| 1052 |
|
|
Vector3 result = { 0 }; |
| 1053 |
|
|
|
| 1054 |
|
✗ |
result.x = fminf(max.x, fmaxf(min.x, v.x)); |
| 1055 |
|
✗ |
result.y = fminf(max.y, fmaxf(min.y, v.y)); |
| 1056 |
|
✗ |
result.z = fminf(max.z, fmaxf(min.z, v.z)); |
| 1057 |
|
|
|
| 1058 |
|
✗ |
return result; |
| 1059 |
|
|
} |
| 1060 |
|
|
|
| 1061 |
|
|
// Clamp the magnitude of the vector between two values |
| 1062 |
|
✗ |
RMAPI Vector3 Vector3ClampValue(Vector3 v, float min, float max) |
| 1063 |
|
|
{ |
| 1064 |
|
|
Vector3 result = v; |
| 1065 |
|
|
|
| 1066 |
|
✗ |
float length = (v.x*v.x) + (v.y*v.y) + (v.z*v.z); |
| 1067 |
|
✗ |
if (length > 0.0f) |
| 1068 |
|
|
{ |
| 1069 |
|
✗ |
length = sqrtf(length); |
| 1070 |
|
|
|
| 1071 |
|
✗ |
if (length < min) |
| 1072 |
|
|
{ |
| 1073 |
|
✗ |
float scale = min/length; |
| 1074 |
|
✗ |
result.x = v.x*scale; |
| 1075 |
|
✗ |
result.y = v.y*scale; |
| 1076 |
|
✗ |
result.z = v.z*scale; |
| 1077 |
|
|
} |
| 1078 |
|
✗ |
else if (length > max) |
| 1079 |
|
|
{ |
| 1080 |
|
✗ |
float scale = max/length; |
| 1081 |
|
✗ |
result.x = v.x*scale; |
| 1082 |
|
✗ |
result.y = v.y*scale; |
| 1083 |
|
✗ |
result.z = v.z*scale; |
| 1084 |
|
|
} |
| 1085 |
|
|
} |
| 1086 |
|
|
|
| 1087 |
|
✗ |
return result; |
| 1088 |
|
|
} |
| 1089 |
|
|
|
| 1090 |
|
|
// Check whether two given vectors are almost equal |
| 1091 |
|
✗ |
RMAPI int Vector3Equals(Vector3 p, Vector3 q) |
| 1092 |
|
|
{ |
| 1093 |
|
✗ |
int result = ((fabsf(p.x - q.x)) <= (EPSILON*fmaxf(1.0f, fmaxf(fabsf(p.x), fabsf(q.x))))) && |
| 1094 |
|
✗ |
((fabsf(p.y - q.y)) <= (EPSILON*fmaxf(1.0f, fmaxf(fabsf(p.y), fabsf(q.y))))) && |
| 1095 |
|
✗ |
((fabsf(p.z - q.z)) <= (EPSILON*fmaxf(1.0f, fmaxf(fabsf(p.z), fabsf(q.z))))); |
| 1096 |
|
|
|
| 1097 |
|
✗ |
return result; |
| 1098 |
|
|
} |
| 1099 |
|
|
|
| 1100 |
|
|
// Compute the direction of a refracted ray where v specifies the |
| 1101 |
|
|
// normalized direction of the incoming ray, n specifies the |
| 1102 |
|
|
// normalized normal vector of the interface of two optical media, |
| 1103 |
|
|
// and r specifies the ratio of the refractive index of the medium |
| 1104 |
|
|
// from where the ray comes to the refractive index of the medium |
| 1105 |
|
|
// on the other side of the surface |
| 1106 |
|
✗ |
RMAPI Vector3 Vector3Refract(Vector3 v, Vector3 n, float r) |
| 1107 |
|
|
{ |
| 1108 |
|
|
Vector3 result = { 0 }; |
| 1109 |
|
|
|
| 1110 |
|
✗ |
float dot = v.x*n.x + v.y*n.y + v.z*n.z; |
| 1111 |
|
✗ |
float d = 1.0f - r*r*(1.0f - dot*dot); |
| 1112 |
|
|
|
| 1113 |
|
✗ |
if (d >= 0.0f) |
| 1114 |
|
|
{ |
| 1115 |
|
✗ |
d = sqrtf(d); |
| 1116 |
|
✗ |
v.x = r*v.x - (r*dot + d)*n.x; |
| 1117 |
|
✗ |
v.y = r*v.y - (r*dot + d)*n.y; |
| 1118 |
|
✗ |
v.z = r*v.z - (r*dot + d)*n.z; |
| 1119 |
|
|
|
| 1120 |
|
|
result = v; |
| 1121 |
|
|
} |
| 1122 |
|
|
|
| 1123 |
|
✗ |
return result; |
| 1124 |
|
|
} |
| 1125 |
|
|
|
| 1126 |
|
|
//---------------------------------------------------------------------------------- |
| 1127 |
|
|
// Module Functions Definition - Matrix math |
| 1128 |
|
|
//---------------------------------------------------------------------------------- |
| 1129 |
|
|
|
| 1130 |
|
|
// Compute matrix determinant |
| 1131 |
|
✗ |
RMAPI float MatrixDeterminant(Matrix mat) |
| 1132 |
|
|
{ |
| 1133 |
|
|
float result = 0.0f; |
| 1134 |
|
|
|
| 1135 |
|
|
// Cache the matrix values (speed optimization) |
| 1136 |
|
✗ |
float a00 = mat.m0, a01 = mat.m1, a02 = mat.m2, a03 = mat.m3; |
| 1137 |
|
✗ |
float a10 = mat.m4, a11 = mat.m5, a12 = mat.m6, a13 = mat.m7; |
| 1138 |
|
✗ |
float a20 = mat.m8, a21 = mat.m9, a22 = mat.m10, a23 = mat.m11; |
| 1139 |
|
✗ |
float a30 = mat.m12, a31 = mat.m13, a32 = mat.m14, a33 = mat.m15; |
| 1140 |
|
|
|
| 1141 |
|
✗ |
result = a30*a21*a12*a03 - a20*a31*a12*a03 - a30*a11*a22*a03 + a10*a31*a22*a03 + |
| 1142 |
|
✗ |
a20*a11*a32*a03 - a10*a21*a32*a03 - a30*a21*a02*a13 + a20*a31*a02*a13 + |
| 1143 |
|
✗ |
a30*a01*a22*a13 - a00*a31*a22*a13 - a20*a01*a32*a13 + a00*a21*a32*a13 + |
| 1144 |
|
✗ |
a30*a11*a02*a23 - a10*a31*a02*a23 - a30*a01*a12*a23 + a00*a31*a12*a23 + |
| 1145 |
|
✗ |
a10*a01*a32*a23 - a00*a11*a32*a23 - a20*a11*a02*a33 + a10*a21*a02*a33 + |
| 1146 |
|
✗ |
a20*a01*a12*a33 - a00*a21*a12*a33 - a10*a01*a22*a33 + a00*a11*a22*a33; |
| 1147 |
|
|
|
| 1148 |
|
✗ |
return result; |
| 1149 |
|
|
} |
| 1150 |
|
|
|
| 1151 |
|
|
// Get the trace of the matrix (sum of the values along the diagonal) |
| 1152 |
|
✗ |
RMAPI float MatrixTrace(Matrix mat) |
| 1153 |
|
|
{ |
| 1154 |
|
✗ |
float result = (mat.m0 + mat.m5 + mat.m10 + mat.m15); |
| 1155 |
|
|
|
| 1156 |
|
✗ |
return result; |
| 1157 |
|
|
} |
| 1158 |
|
|
|
| 1159 |
|
|
// Transposes provided matrix |
| 1160 |
|
✗ |
RMAPI Matrix MatrixTranspose(Matrix mat) |
| 1161 |
|
|
{ |
| 1162 |
|
|
Matrix result = { 0 }; |
| 1163 |
|
|
|
| 1164 |
|
✗ |
result.m0 = mat.m0; |
| 1165 |
|
✗ |
result.m1 = mat.m4; |
| 1166 |
|
✗ |
result.m2 = mat.m8; |
| 1167 |
|
✗ |
result.m3 = mat.m12; |
| 1168 |
|
✗ |
result.m4 = mat.m1; |
| 1169 |
|
✗ |
result.m5 = mat.m5; |
| 1170 |
|
✗ |
result.m6 = mat.m9; |
| 1171 |
|
✗ |
result.m7 = mat.m13; |
| 1172 |
|
✗ |
result.m8 = mat.m2; |
| 1173 |
|
✗ |
result.m9 = mat.m6; |
| 1174 |
|
✗ |
result.m10 = mat.m10; |
| 1175 |
|
✗ |
result.m11 = mat.m14; |
| 1176 |
|
✗ |
result.m12 = mat.m3; |
| 1177 |
|
✗ |
result.m13 = mat.m7; |
| 1178 |
|
✗ |
result.m14 = mat.m11; |
| 1179 |
|
✗ |
result.m15 = mat.m15; |
| 1180 |
|
|
|
| 1181 |
|
✗ |
return result; |
| 1182 |
|
|
} |
| 1183 |
|
|
|
| 1184 |
|
|
// Invert provided matrix |
| 1185 |
|
✗ |
RMAPI Matrix MatrixInvert(Matrix mat) |
| 1186 |
|
|
{ |
| 1187 |
|
|
Matrix result = { 0 }; |
| 1188 |
|
|
|
| 1189 |
|
|
// Cache the matrix values (speed optimization) |
| 1190 |
|
✗ |
float a00 = mat.m0, a01 = mat.m1, a02 = mat.m2, a03 = mat.m3; |
| 1191 |
|
✗ |
float a10 = mat.m4, a11 = mat.m5, a12 = mat.m6, a13 = mat.m7; |
| 1192 |
|
✗ |
float a20 = mat.m8, a21 = mat.m9, a22 = mat.m10, a23 = mat.m11; |
| 1193 |
|
✗ |
float a30 = mat.m12, a31 = mat.m13, a32 = mat.m14, a33 = mat.m15; |
| 1194 |
|
|
|
| 1195 |
|
✗ |
float b00 = a00*a11 - a01*a10; |
| 1196 |
|
✗ |
float b01 = a00*a12 - a02*a10; |
| 1197 |
|
✗ |
float b02 = a00*a13 - a03*a10; |
| 1198 |
|
✗ |
float b03 = a01*a12 - a02*a11; |
| 1199 |
|
✗ |
float b04 = a01*a13 - a03*a11; |
| 1200 |
|
✗ |
float b05 = a02*a13 - a03*a12; |
| 1201 |
|
✗ |
float b06 = a20*a31 - a21*a30; |
| 1202 |
|
✗ |
float b07 = a20*a32 - a22*a30; |
| 1203 |
|
✗ |
float b08 = a20*a33 - a23*a30; |
| 1204 |
|
✗ |
float b09 = a21*a32 - a22*a31; |
| 1205 |
|
✗ |
float b10 = a21*a33 - a23*a31; |
| 1206 |
|
✗ |
float b11 = a22*a33 - a23*a32; |
| 1207 |
|
|
|
| 1208 |
|
|
// Calculate the invert determinant (inlined to avoid double-caching) |
| 1209 |
|
✗ |
float invDet = 1.0f/(b00*b11 - b01*b10 + b02*b09 + b03*b08 - b04*b07 + b05*b06); |
| 1210 |
|
|
|
| 1211 |
|
✗ |
result.m0 = (a11*b11 - a12*b10 + a13*b09)*invDet; |
| 1212 |
|
✗ |
result.m1 = (-a01*b11 + a02*b10 - a03*b09)*invDet; |
| 1213 |
|
✗ |
result.m2 = (a31*b05 - a32*b04 + a33*b03)*invDet; |
| 1214 |
|
✗ |
result.m3 = (-a21*b05 + a22*b04 - a23*b03)*invDet; |
| 1215 |
|
✗ |
result.m4 = (-a10*b11 + a12*b08 - a13*b07)*invDet; |
| 1216 |
|
✗ |
result.m5 = (a00*b11 - a02*b08 + a03*b07)*invDet; |
| 1217 |
|
✗ |
result.m6 = (-a30*b05 + a32*b02 - a33*b01)*invDet; |
| 1218 |
|
✗ |
result.m7 = (a20*b05 - a22*b02 + a23*b01)*invDet; |
| 1219 |
|
✗ |
result.m8 = (a10*b10 - a11*b08 + a13*b06)*invDet; |
| 1220 |
|
✗ |
result.m9 = (-a00*b10 + a01*b08 - a03*b06)*invDet; |
| 1221 |
|
✗ |
result.m10 = (a30*b04 - a31*b02 + a33*b00)*invDet; |
| 1222 |
|
✗ |
result.m11 = (-a20*b04 + a21*b02 - a23*b00)*invDet; |
| 1223 |
|
✗ |
result.m12 = (-a10*b09 + a11*b07 - a12*b06)*invDet; |
| 1224 |
|
✗ |
result.m13 = (a00*b09 - a01*b07 + a02*b06)*invDet; |
| 1225 |
|
✗ |
result.m14 = (-a30*b03 + a31*b01 - a32*b00)*invDet; |
| 1226 |
|
✗ |
result.m15 = (a20*b03 - a21*b01 + a22*b00)*invDet; |
| 1227 |
|
|
|
| 1228 |
|
✗ |
return result; |
| 1229 |
|
|
} |
| 1230 |
|
|
|
| 1231 |
|
|
// Get identity matrix |
| 1232 |
|
✗ |
RMAPI Matrix MatrixIdentity(void) |
| 1233 |
|
|
{ |
| 1234 |
|
|
Matrix result = { 1.0f, 0.0f, 0.0f, 0.0f, |
| 1235 |
|
|
0.0f, 1.0f, 0.0f, 0.0f, |
| 1236 |
|
|
0.0f, 0.0f, 1.0f, 0.0f, |
| 1237 |
|
|
0.0f, 0.0f, 0.0f, 1.0f }; |
| 1238 |
|
|
|
| 1239 |
|
✗ |
return result; |
| 1240 |
|
|
} |
| 1241 |
|
|
|
| 1242 |
|
|
// Add two matrices |
| 1243 |
|
✗ |
RMAPI Matrix MatrixAdd(Matrix left, Matrix right) |
| 1244 |
|
|
{ |
| 1245 |
|
|
Matrix result = { 0 }; |
| 1246 |
|
|
|
| 1247 |
|
✗ |
result.m0 = left.m0 + right.m0; |
| 1248 |
|
✗ |
result.m1 = left.m1 + right.m1; |
| 1249 |
|
✗ |
result.m2 = left.m2 + right.m2; |
| 1250 |
|
✗ |
result.m3 = left.m3 + right.m3; |
| 1251 |
|
✗ |
result.m4 = left.m4 + right.m4; |
| 1252 |
|
✗ |
result.m5 = left.m5 + right.m5; |
| 1253 |
|
✗ |
result.m6 = left.m6 + right.m6; |
| 1254 |
|
✗ |
result.m7 = left.m7 + right.m7; |
| 1255 |
|
✗ |
result.m8 = left.m8 + right.m8; |
| 1256 |
|
✗ |
result.m9 = left.m9 + right.m9; |
| 1257 |
|
✗ |
result.m10 = left.m10 + right.m10; |
| 1258 |
|
✗ |
result.m11 = left.m11 + right.m11; |
| 1259 |
|
✗ |
result.m12 = left.m12 + right.m12; |
| 1260 |
|
✗ |
result.m13 = left.m13 + right.m13; |
| 1261 |
|
✗ |
result.m14 = left.m14 + right.m14; |
| 1262 |
|
✗ |
result.m15 = left.m15 + right.m15; |
| 1263 |
|
|
|
| 1264 |
|
✗ |
return result; |
| 1265 |
|
|
} |
| 1266 |
|
|
|
| 1267 |
|
|
// Subtract two matrices (left - right) |
| 1268 |
|
✗ |
RMAPI Matrix MatrixSubtract(Matrix left, Matrix right) |
| 1269 |
|
|
{ |
| 1270 |
|
|
Matrix result = { 0 }; |
| 1271 |
|
|
|
| 1272 |
|
✗ |
result.m0 = left.m0 - right.m0; |
| 1273 |
|
✗ |
result.m1 = left.m1 - right.m1; |
| 1274 |
|
✗ |
result.m2 = left.m2 - right.m2; |
| 1275 |
|
✗ |
result.m3 = left.m3 - right.m3; |
| 1276 |
|
✗ |
result.m4 = left.m4 - right.m4; |
| 1277 |
|
✗ |
result.m5 = left.m5 - right.m5; |
| 1278 |
|
✗ |
result.m6 = left.m6 - right.m6; |
| 1279 |
|
✗ |
result.m7 = left.m7 - right.m7; |
| 1280 |
|
✗ |
result.m8 = left.m8 - right.m8; |
| 1281 |
|
✗ |
result.m9 = left.m9 - right.m9; |
| 1282 |
|
✗ |
result.m10 = left.m10 - right.m10; |
| 1283 |
|
✗ |
result.m11 = left.m11 - right.m11; |
| 1284 |
|
✗ |
result.m12 = left.m12 - right.m12; |
| 1285 |
|
✗ |
result.m13 = left.m13 - right.m13; |
| 1286 |
|
✗ |
result.m14 = left.m14 - right.m14; |
| 1287 |
|
✗ |
result.m15 = left.m15 - right.m15; |
| 1288 |
|
|
|
| 1289 |
|
✗ |
return result; |
| 1290 |
|
|
} |
| 1291 |
|
|
|
| 1292 |
|
|
// Get two matrix multiplication |
| 1293 |
|
|
// NOTE: When multiplying matrices... the order matters! |
| 1294 |
|
✗ |
RMAPI Matrix MatrixMultiply(Matrix left, Matrix right) |
| 1295 |
|
|
{ |
| 1296 |
|
|
Matrix result = { 0 }; |
| 1297 |
|
|
|
| 1298 |
|
✗ |
result.m0 = left.m0*right.m0 + left.m1*right.m4 + left.m2*right.m8 + left.m3*right.m12; |
| 1299 |
|
✗ |
result.m1 = left.m0*right.m1 + left.m1*right.m5 + left.m2*right.m9 + left.m3*right.m13; |
| 1300 |
|
✗ |
result.m2 = left.m0*right.m2 + left.m1*right.m6 + left.m2*right.m10 + left.m3*right.m14; |
| 1301 |
|
✗ |
result.m3 = left.m0*right.m3 + left.m1*right.m7 + left.m2*right.m11 + left.m3*right.m15; |
| 1302 |
|
✗ |
result.m4 = left.m4*right.m0 + left.m5*right.m4 + left.m6*right.m8 + left.m7*right.m12; |
| 1303 |
|
✗ |
result.m5 = left.m4*right.m1 + left.m5*right.m5 + left.m6*right.m9 + left.m7*right.m13; |
| 1304 |
|
✗ |
result.m6 = left.m4*right.m2 + left.m5*right.m6 + left.m6*right.m10 + left.m7*right.m14; |
| 1305 |
|
✗ |
result.m7 = left.m4*right.m3 + left.m5*right.m7 + left.m6*right.m11 + left.m7*right.m15; |
| 1306 |
|
✗ |
result.m8 = left.m8*right.m0 + left.m9*right.m4 + left.m10*right.m8 + left.m11*right.m12; |
| 1307 |
|
✗ |
result.m9 = left.m8*right.m1 + left.m9*right.m5 + left.m10*right.m9 + left.m11*right.m13; |
| 1308 |
|
✗ |
result.m10 = left.m8*right.m2 + left.m9*right.m6 + left.m10*right.m10 + left.m11*right.m14; |
| 1309 |
|
✗ |
result.m11 = left.m8*right.m3 + left.m9*right.m7 + left.m10*right.m11 + left.m11*right.m15; |
| 1310 |
|
✗ |
result.m12 = left.m12*right.m0 + left.m13*right.m4 + left.m14*right.m8 + left.m15*right.m12; |
| 1311 |
|
✗ |
result.m13 = left.m12*right.m1 + left.m13*right.m5 + left.m14*right.m9 + left.m15*right.m13; |
| 1312 |
|
✗ |
result.m14 = left.m12*right.m2 + left.m13*right.m6 + left.m14*right.m10 + left.m15*right.m14; |
| 1313 |
|
✗ |
result.m15 = left.m12*right.m3 + left.m13*right.m7 + left.m14*right.m11 + left.m15*right.m15; |
| 1314 |
|
|
|
| 1315 |
|
✗ |
return result; |
| 1316 |
|
|
} |
| 1317 |
|
|
|
| 1318 |
|
|
// Get translation matrix |
| 1319 |
|
✗ |
RMAPI Matrix MatrixTranslate(float x, float y, float z) |
| 1320 |
|
|
{ |
| 1321 |
|
|
Matrix result = { 1.0f, 0.0f, 0.0f, x, |
| 1322 |
|
|
0.0f, 1.0f, 0.0f, y, |
| 1323 |
|
|
0.0f, 0.0f, 1.0f, z, |
| 1324 |
|
|
0.0f, 0.0f, 0.0f, 1.0f }; |
| 1325 |
|
|
|
| 1326 |
|
✗ |
return result; |
| 1327 |
|
|
} |
| 1328 |
|
|
|
| 1329 |
|
|
// Create rotation matrix from axis and angle |
| 1330 |
|
|
// NOTE: Angle should be provided in radians |
| 1331 |
|
✗ |
RMAPI Matrix MatrixRotate(Vector3 axis, float angle) |
| 1332 |
|
|
{ |
| 1333 |
|
|
Matrix result = { 0 }; |
| 1334 |
|
|
|
| 1335 |
|
✗ |
float x = axis.x, y = axis.y, z = axis.z; |
| 1336 |
|
|
|
| 1337 |
|
✗ |
float lengthSquared = x*x + y*y + z*z; |
| 1338 |
|
|
|
| 1339 |
|
✗ |
if ((lengthSquared != 1.0f) && (lengthSquared != 0.0f)) |
| 1340 |
|
|
{ |
| 1341 |
|
✗ |
float ilength = 1.0f/sqrtf(lengthSquared); |
| 1342 |
|
✗ |
x *= ilength; |
| 1343 |
|
✗ |
y *= ilength; |
| 1344 |
|
✗ |
z *= ilength; |
| 1345 |
|
|
} |
| 1346 |
|
|
|
| 1347 |
|
✗ |
float sinres = sinf(angle); |
| 1348 |
|
✗ |
float cosres = cosf(angle); |
| 1349 |
|
✗ |
float t = 1.0f - cosres; |
| 1350 |
|
|
|
| 1351 |
|
✗ |
result.m0 = x*x*t + cosres; |
| 1352 |
|
✗ |
result.m1 = y*x*t + z*sinres; |
| 1353 |
|
✗ |
result.m2 = z*x*t - y*sinres; |
| 1354 |
|
|
result.m3 = 0.0f; |
| 1355 |
|
|
|
| 1356 |
|
✗ |
result.m4 = x*y*t - z*sinres; |
| 1357 |
|
✗ |
result.m5 = y*y*t + cosres; |
| 1358 |
|
✗ |
result.m6 = z*y*t + x*sinres; |
| 1359 |
|
|
result.m7 = 0.0f; |
| 1360 |
|
|
|
| 1361 |
|
✗ |
result.m8 = x*z*t + y*sinres; |
| 1362 |
|
✗ |
result.m9 = y*z*t - x*sinres; |
| 1363 |
|
✗ |
result.m10 = z*z*t + cosres; |
| 1364 |
|
|
result.m11 = 0.0f; |
| 1365 |
|
|
|
| 1366 |
|
|
result.m12 = 0.0f; |
| 1367 |
|
|
result.m13 = 0.0f; |
| 1368 |
|
|
result.m14 = 0.0f; |
| 1369 |
|
|
result.m15 = 1.0f; |
| 1370 |
|
|
|
| 1371 |
|
✗ |
return result; |
| 1372 |
|
|
} |
| 1373 |
|
|
|
| 1374 |
|
|
// Get x-rotation matrix |
| 1375 |
|
|
// NOTE: Angle must be provided in radians |
| 1376 |
|
✗ |
RMAPI Matrix MatrixRotateX(float angle) |
| 1377 |
|
|
{ |
| 1378 |
|
|
Matrix result = { 1.0f, 0.0f, 0.0f, 0.0f, |
| 1379 |
|
|
0.0f, 1.0f, 0.0f, 0.0f, |
| 1380 |
|
|
0.0f, 0.0f, 1.0f, 0.0f, |
| 1381 |
|
|
0.0f, 0.0f, 0.0f, 1.0f }; // MatrixIdentity() |
| 1382 |
|
|
|
| 1383 |
|
✗ |
float cosres = cosf(angle); |
| 1384 |
|
✗ |
float sinres = sinf(angle); |
| 1385 |
|
|
|
| 1386 |
|
|
result.m5 = cosres; |
| 1387 |
|
|
result.m6 = sinres; |
| 1388 |
|
✗ |
result.m9 = -sinres; |
| 1389 |
|
|
result.m10 = cosres; |
| 1390 |
|
|
|
| 1391 |
|
✗ |
return result; |
| 1392 |
|
|
} |
| 1393 |
|
|
|
| 1394 |
|
|
// Get y-rotation matrix |
| 1395 |
|
|
// NOTE: Angle must be provided in radians |
| 1396 |
|
✗ |
RMAPI Matrix MatrixRotateY(float angle) |
| 1397 |
|
|
{ |
| 1398 |
|
|
Matrix result = { 1.0f, 0.0f, 0.0f, 0.0f, |
| 1399 |
|
|
0.0f, 1.0f, 0.0f, 0.0f, |
| 1400 |
|
|
0.0f, 0.0f, 1.0f, 0.0f, |
| 1401 |
|
|
0.0f, 0.0f, 0.0f, 1.0f }; // MatrixIdentity() |
| 1402 |
|
|
|
| 1403 |
|
✗ |
float cosres = cosf(angle); |
| 1404 |
|
✗ |
float sinres = sinf(angle); |
| 1405 |
|
|
|
| 1406 |
|
|
result.m0 = cosres; |
| 1407 |
|
✗ |
result.m2 = -sinres; |
| 1408 |
|
|
result.m8 = sinres; |
| 1409 |
|
|
result.m10 = cosres; |
| 1410 |
|
|
|
| 1411 |
|
✗ |
return result; |
| 1412 |
|
|
} |
| 1413 |
|
|
|
| 1414 |
|
|
// Get z-rotation matrix |
| 1415 |
|
|
// NOTE: Angle must be provided in radians |
| 1416 |
|
✗ |
RMAPI Matrix MatrixRotateZ(float angle) |
| 1417 |
|
|
{ |
| 1418 |
|
|
Matrix result = { 1.0f, 0.0f, 0.0f, 0.0f, |
| 1419 |
|
|
0.0f, 1.0f, 0.0f, 0.0f, |
| 1420 |
|
|
0.0f, 0.0f, 1.0f, 0.0f, |
| 1421 |
|
|
0.0f, 0.0f, 0.0f, 1.0f }; // MatrixIdentity() |
| 1422 |
|
|
|
| 1423 |
|
✗ |
float cosres = cosf(angle); |
| 1424 |
|
✗ |
float sinres = sinf(angle); |
| 1425 |
|
|
|
| 1426 |
|
|
result.m0 = cosres; |
| 1427 |
|
|
result.m1 = sinres; |
| 1428 |
|
✗ |
result.m4 = -sinres; |
| 1429 |
|
|
result.m5 = cosres; |
| 1430 |
|
|
|
| 1431 |
|
✗ |
return result; |
| 1432 |
|
|
} |
| 1433 |
|
|
|
| 1434 |
|
|
|
| 1435 |
|
|
// Get xyz-rotation matrix |
| 1436 |
|
|
// NOTE: Angle must be provided in radians |
| 1437 |
|
✗ |
RMAPI Matrix MatrixRotateXYZ(Vector3 angle) |
| 1438 |
|
|
{ |
| 1439 |
|
|
Matrix result = { 1.0f, 0.0f, 0.0f, 0.0f, |
| 1440 |
|
|
0.0f, 1.0f, 0.0f, 0.0f, |
| 1441 |
|
|
0.0f, 0.0f, 1.0f, 0.0f, |
| 1442 |
|
|
0.0f, 0.0f, 0.0f, 1.0f }; // MatrixIdentity() |
| 1443 |
|
|
|
| 1444 |
|
✗ |
float cosz = cosf(-angle.z); |
| 1445 |
|
✗ |
float sinz = sinf(-angle.z); |
| 1446 |
|
✗ |
float cosy = cosf(-angle.y); |
| 1447 |
|
✗ |
float siny = sinf(-angle.y); |
| 1448 |
|
✗ |
float cosx = cosf(-angle.x); |
| 1449 |
|
✗ |
float sinx = sinf(-angle.x); |
| 1450 |
|
|
|
| 1451 |
|
✗ |
result.m0 = cosz*cosy; |
| 1452 |
|
✗ |
result.m1 = (cosz*siny*sinx) - (sinz*cosx); |
| 1453 |
|
✗ |
result.m2 = (cosz*siny*cosx) + (sinz*sinx); |
| 1454 |
|
|
|
| 1455 |
|
✗ |
result.m4 = sinz*cosy; |
| 1456 |
|
✗ |
result.m5 = (sinz*siny*sinx) + (cosz*cosx); |
| 1457 |
|
✗ |
result.m6 = (sinz*siny*cosx) - (cosz*sinx); |
| 1458 |
|
|
|
| 1459 |
|
✗ |
result.m8 = -siny; |
| 1460 |
|
✗ |
result.m9 = cosy*sinx; |
| 1461 |
|
✗ |
result.m10= cosy*cosx; |
| 1462 |
|
|
|
| 1463 |
|
✗ |
return result; |
| 1464 |
|
|
} |
| 1465 |
|
|
|
| 1466 |
|
|
// Get zyx-rotation matrix |
| 1467 |
|
|
// NOTE: Angle must be provided in radians |
| 1468 |
|
✗ |
RMAPI Matrix MatrixRotateZYX(Vector3 angle) |
| 1469 |
|
|
{ |
| 1470 |
|
|
Matrix result = { 0 }; |
| 1471 |
|
|
|
| 1472 |
|
✗ |
float cz = cosf(angle.z); |
| 1473 |
|
✗ |
float sz = sinf(angle.z); |
| 1474 |
|
✗ |
float cy = cosf(angle.y); |
| 1475 |
|
✗ |
float sy = sinf(angle.y); |
| 1476 |
|
✗ |
float cx = cosf(angle.x); |
| 1477 |
|
✗ |
float sx = sinf(angle.x); |
| 1478 |
|
|
|
| 1479 |
|
✗ |
result.m0 = cz*cy; |
| 1480 |
|
✗ |
result.m4 = cz*sy*sx - cx*sz; |
| 1481 |
|
✗ |
result.m8 = sz*sx + cz*cx*sy; |
| 1482 |
|
|
result.m12 = 0; |
| 1483 |
|
|
|
| 1484 |
|
✗ |
result.m1 = cy*sz; |
| 1485 |
|
✗ |
result.m5 = cz*cx + sz*sy*sx; |
| 1486 |
|
✗ |
result.m9 = cx*sz*sy - cz*sx; |
| 1487 |
|
|
result.m13 = 0; |
| 1488 |
|
|
|
| 1489 |
|
✗ |
result.m2 = -sy; |
| 1490 |
|
✗ |
result.m6 = cy*sx; |
| 1491 |
|
✗ |
result.m10 = cy*cx; |
| 1492 |
|
|
result.m14 = 0; |
| 1493 |
|
|
|
| 1494 |
|
|
result.m3 = 0; |
| 1495 |
|
|
result.m7 = 0; |
| 1496 |
|
|
result.m11 = 0; |
| 1497 |
|
|
result.m15 = 1; |
| 1498 |
|
|
|
| 1499 |
|
✗ |
return result; |
| 1500 |
|
|
} |
| 1501 |
|
|
|
| 1502 |
|
|
// Get scaling matrix |
| 1503 |
|
✗ |
RMAPI Matrix MatrixScale(float x, float y, float z) |
| 1504 |
|
|
{ |
| 1505 |
|
|
Matrix result = { x, 0.0f, 0.0f, 0.0f, |
| 1506 |
|
|
0.0f, y, 0.0f, 0.0f, |
| 1507 |
|
|
0.0f, 0.0f, z, 0.0f, |
| 1508 |
|
|
0.0f, 0.0f, 0.0f, 1.0f }; |
| 1509 |
|
|
|
| 1510 |
|
✗ |
return result; |
| 1511 |
|
|
} |
| 1512 |
|
|
|
| 1513 |
|
|
// Get perspective projection matrix |
| 1514 |
|
✗ |
RMAPI Matrix MatrixFrustum(double left, double right, double bottom, double top, double near, double far) |
| 1515 |
|
|
{ |
| 1516 |
|
|
Matrix result = { 0 }; |
| 1517 |
|
|
|
| 1518 |
|
✗ |
float rl = (float)(right - left); |
| 1519 |
|
✗ |
float tb = (float)(top - bottom); |
| 1520 |
|
✗ |
float fn = (float)(far - near); |
| 1521 |
|
|
|
| 1522 |
|
✗ |
result.m0 = ((float)near*2.0f)/rl; |
| 1523 |
|
|
result.m1 = 0.0f; |
| 1524 |
|
|
result.m2 = 0.0f; |
| 1525 |
|
|
result.m3 = 0.0f; |
| 1526 |
|
|
|
| 1527 |
|
|
result.m4 = 0.0f; |
| 1528 |
|
✗ |
result.m5 = ((float)near*2.0f)/tb; |
| 1529 |
|
|
result.m6 = 0.0f; |
| 1530 |
|
|
result.m7 = 0.0f; |
| 1531 |
|
|
|
| 1532 |
|
✗ |
result.m8 = ((float)right + (float)left)/rl; |
| 1533 |
|
✗ |
result.m9 = ((float)top + (float)bottom)/tb; |
| 1534 |
|
✗ |
result.m10 = -((float)far + (float)near)/fn; |
| 1535 |
|
|
result.m11 = -1.0f; |
| 1536 |
|
|
|
| 1537 |
|
|
result.m12 = 0.0f; |
| 1538 |
|
|
result.m13 = 0.0f; |
| 1539 |
|
✗ |
result.m14 = -((float)far*(float)near*2.0f)/fn; |
| 1540 |
|
|
result.m15 = 0.0f; |
| 1541 |
|
|
|
| 1542 |
|
✗ |
return result; |
| 1543 |
|
|
} |
| 1544 |
|
|
|
| 1545 |
|
|
// Get perspective projection matrix |
| 1546 |
|
|
// NOTE: Fovy angle must be provided in radians |
| 1547 |
|
✗ |
RMAPI Matrix MatrixPerspective(double fovY, double aspect, double nearPlane, double farPlane) |
| 1548 |
|
|
{ |
| 1549 |
|
|
Matrix result = { 0 }; |
| 1550 |
|
|
|
| 1551 |
|
✗ |
double top = nearPlane*tan(fovY*0.5); |
| 1552 |
|
✗ |
double bottom = -top; |
| 1553 |
|
✗ |
double right = top*aspect; |
| 1554 |
|
✗ |
double left = -right; |
| 1555 |
|
|
|
| 1556 |
|
|
// MatrixFrustum(-right, right, -top, top, near, far); |
| 1557 |
|
✗ |
float rl = (float)(right - left); |
| 1558 |
|
✗ |
float tb = (float)(top - bottom); |
| 1559 |
|
✗ |
float fn = (float)(farPlane - nearPlane); |
| 1560 |
|
|
|
| 1561 |
|
✗ |
result.m0 = ((float)nearPlane*2.0f)/rl; |
| 1562 |
|
✗ |
result.m5 = ((float)nearPlane*2.0f)/tb; |
| 1563 |
|
✗ |
result.m8 = ((float)right + (float)left)/rl; |
| 1564 |
|
✗ |
result.m9 = ((float)top + (float)bottom)/tb; |
| 1565 |
|
✗ |
result.m10 = -((float)farPlane + (float)nearPlane)/fn; |
| 1566 |
|
|
result.m11 = -1.0f; |
| 1567 |
|
✗ |
result.m14 = -((float)farPlane*(float)nearPlane*2.0f)/fn; |
| 1568 |
|
|
|
| 1569 |
|
✗ |
return result; |
| 1570 |
|
|
} |
| 1571 |
|
|
|
| 1572 |
|
|
// Get orthographic projection matrix |
| 1573 |
|
✗ |
RMAPI Matrix MatrixOrtho(double left, double right, double bottom, double top, double nearPlane, double farPlane) |
| 1574 |
|
|
{ |
| 1575 |
|
|
Matrix result = { 0 }; |
| 1576 |
|
|
|
| 1577 |
|
✗ |
float rl = (float)(right - left); |
| 1578 |
|
✗ |
float tb = (float)(top - bottom); |
| 1579 |
|
✗ |
float fn = (float)(farPlane - nearPlane); |
| 1580 |
|
|
|
| 1581 |
|
✗ |
result.m0 = 2.0f/rl; |
| 1582 |
|
|
result.m1 = 0.0f; |
| 1583 |
|
|
result.m2 = 0.0f; |
| 1584 |
|
|
result.m3 = 0.0f; |
| 1585 |
|
|
result.m4 = 0.0f; |
| 1586 |
|
✗ |
result.m5 = 2.0f/tb; |
| 1587 |
|
|
result.m6 = 0.0f; |
| 1588 |
|
|
result.m7 = 0.0f; |
| 1589 |
|
|
result.m8 = 0.0f; |
| 1590 |
|
|
result.m9 = 0.0f; |
| 1591 |
|
✗ |
result.m10 = -2.0f/fn; |
| 1592 |
|
|
result.m11 = 0.0f; |
| 1593 |
|
✗ |
result.m12 = -((float)left + (float)right)/rl; |
| 1594 |
|
✗ |
result.m13 = -((float)top + (float)bottom)/tb; |
| 1595 |
|
✗ |
result.m14 = -((float)farPlane + (float)nearPlane)/fn; |
| 1596 |
|
|
result.m15 = 1.0f; |
| 1597 |
|
|
|
| 1598 |
|
✗ |
return result; |
| 1599 |
|
|
} |
| 1600 |
|
|
|
| 1601 |
|
|
// Get camera look-at matrix (view matrix) |
| 1602 |
|
✗ |
RMAPI Matrix MatrixLookAt(Vector3 eye, Vector3 target, Vector3 up) |
| 1603 |
|
|
{ |
| 1604 |
|
|
Matrix result = { 0 }; |
| 1605 |
|
|
|
| 1606 |
|
|
float length = 0.0f; |
| 1607 |
|
|
float ilength = 0.0f; |
| 1608 |
|
|
|
| 1609 |
|
|
// Vector3Subtract(eye, target) |
| 1610 |
|
✗ |
Vector3 vz = { eye.x - target.x, eye.y - target.y, eye.z - target.z }; |
| 1611 |
|
|
|
| 1612 |
|
|
// Vector3Normalize(vz) |
| 1613 |
|
|
Vector3 v = vz; |
| 1614 |
|
✗ |
length = sqrtf(v.x*v.x + v.y*v.y + v.z*v.z); |
| 1615 |
|
✗ |
if (length == 0.0f) length = 1.0f; |
| 1616 |
|
✗ |
ilength = 1.0f/length; |
| 1617 |
|
✗ |
vz.x *= ilength; |
| 1618 |
|
✗ |
vz.y *= ilength; |
| 1619 |
|
✗ |
vz.z *= ilength; |
| 1620 |
|
|
|
| 1621 |
|
|
// Vector3CrossProduct(up, vz) |
| 1622 |
|
✗ |
Vector3 vx = { up.y*vz.z - up.z*vz.y, up.z*vz.x - up.x*vz.z, up.x*vz.y - up.y*vz.x }; |
| 1623 |
|
|
|
| 1624 |
|
|
// Vector3Normalize(x) |
| 1625 |
|
|
v = vx; |
| 1626 |
|
✗ |
length = sqrtf(v.x*v.x + v.y*v.y + v.z*v.z); |
| 1627 |
|
✗ |
if (length == 0.0f) length = 1.0f; |
| 1628 |
|
✗ |
ilength = 1.0f/length; |
| 1629 |
|
✗ |
vx.x *= ilength; |
| 1630 |
|
✗ |
vx.y *= ilength; |
| 1631 |
|
✗ |
vx.z *= ilength; |
| 1632 |
|
|
|
| 1633 |
|
|
// Vector3CrossProduct(vz, vx) |
| 1634 |
|
✗ |
Vector3 vy = { vz.y*vx.z - vz.z*vx.y, vz.z*vx.x - vz.x*vx.z, vz.x*vx.y - vz.y*vx.x }; |
| 1635 |
|
|
|
| 1636 |
|
|
result.m0 = vx.x; |
| 1637 |
|
|
result.m1 = vy.x; |
| 1638 |
|
|
result.m2 = vz.x; |
| 1639 |
|
|
result.m3 = 0.0f; |
| 1640 |
|
|
result.m4 = vx.y; |
| 1641 |
|
|
result.m5 = vy.y; |
| 1642 |
|
|
result.m6 = vz.y; |
| 1643 |
|
|
result.m7 = 0.0f; |
| 1644 |
|
|
result.m8 = vx.z; |
| 1645 |
|
|
result.m9 = vy.z; |
| 1646 |
|
|
result.m10 = vz.z; |
| 1647 |
|
|
result.m11 = 0.0f; |
| 1648 |
|
✗ |
result.m12 = -(vx.x*eye.x + vx.y*eye.y + vx.z*eye.z); // Vector3DotProduct(vx, eye) |
| 1649 |
|
✗ |
result.m13 = -(vy.x*eye.x + vy.y*eye.y + vy.z*eye.z); // Vector3DotProduct(vy, eye) |
| 1650 |
|
✗ |
result.m14 = -(vz.x*eye.x + vz.y*eye.y + vz.z*eye.z); // Vector3DotProduct(vz, eye) |
| 1651 |
|
|
result.m15 = 1.0f; |
| 1652 |
|
|
|
| 1653 |
|
✗ |
return result; |
| 1654 |
|
|
} |
| 1655 |
|
|
|
| 1656 |
|
|
// Get float array of matrix data |
| 1657 |
|
✗ |
RMAPI float16 MatrixToFloatV(Matrix mat) |
| 1658 |
|
|
{ |
| 1659 |
|
|
float16 result = { 0 }; |
| 1660 |
|
|
|
| 1661 |
|
✗ |
result.v[0] = mat.m0; |
| 1662 |
|
✗ |
result.v[1] = mat.m1; |
| 1663 |
|
✗ |
result.v[2] = mat.m2; |
| 1664 |
|
✗ |
result.v[3] = mat.m3; |
| 1665 |
|
✗ |
result.v[4] = mat.m4; |
| 1666 |
|
✗ |
result.v[5] = mat.m5; |
| 1667 |
|
✗ |
result.v[6] = mat.m6; |
| 1668 |
|
✗ |
result.v[7] = mat.m7; |
| 1669 |
|
✗ |
result.v[8] = mat.m8; |
| 1670 |
|
✗ |
result.v[9] = mat.m9; |
| 1671 |
|
✗ |
result.v[10] = mat.m10; |
| 1672 |
|
✗ |
result.v[11] = mat.m11; |
| 1673 |
|
✗ |
result.v[12] = mat.m12; |
| 1674 |
|
✗ |
result.v[13] = mat.m13; |
| 1675 |
|
✗ |
result.v[14] = mat.m14; |
| 1676 |
|
✗ |
result.v[15] = mat.m15; |
| 1677 |
|
|
|
| 1678 |
|
✗ |
return result; |
| 1679 |
|
|
} |
| 1680 |
|
|
|
| 1681 |
|
|
//---------------------------------------------------------------------------------- |
| 1682 |
|
|
// Module Functions Definition - Quaternion math |
| 1683 |
|
|
//---------------------------------------------------------------------------------- |
| 1684 |
|
|
|
| 1685 |
|
|
// Add two quaternions |
| 1686 |
|
✗ |
RMAPI Quaternion QuaternionAdd(Quaternion q1, Quaternion q2) |
| 1687 |
|
|
{ |
| 1688 |
|
✗ |
Quaternion result = {q1.x + q2.x, q1.y + q2.y, q1.z + q2.z, q1.w + q2.w}; |
| 1689 |
|
|
|
| 1690 |
|
✗ |
return result; |
| 1691 |
|
|
} |
| 1692 |
|
|
|
| 1693 |
|
|
// Add quaternion and float value |
| 1694 |
|
✗ |
RMAPI Quaternion QuaternionAddValue(Quaternion q, float add) |
| 1695 |
|
|
{ |
| 1696 |
|
✗ |
Quaternion result = {q.x + add, q.y + add, q.z + add, q.w + add}; |
| 1697 |
|
|
|
| 1698 |
|
✗ |
return result; |
| 1699 |
|
|
} |
| 1700 |
|
|
|
| 1701 |
|
|
// Subtract two quaternions |
| 1702 |
|
✗ |
RMAPI Quaternion QuaternionSubtract(Quaternion q1, Quaternion q2) |
| 1703 |
|
|
{ |
| 1704 |
|
✗ |
Quaternion result = {q1.x - q2.x, q1.y - q2.y, q1.z - q2.z, q1.w - q2.w}; |
| 1705 |
|
|
|
| 1706 |
|
✗ |
return result; |
| 1707 |
|
|
} |
| 1708 |
|
|
|
| 1709 |
|
|
// Subtract quaternion and float value |
| 1710 |
|
✗ |
RMAPI Quaternion QuaternionSubtractValue(Quaternion q, float sub) |
| 1711 |
|
|
{ |
| 1712 |
|
✗ |
Quaternion result = {q.x - sub, q.y - sub, q.z - sub, q.w - sub}; |
| 1713 |
|
|
|
| 1714 |
|
✗ |
return result; |
| 1715 |
|
|
} |
| 1716 |
|
|
|
| 1717 |
|
|
// Get identity quaternion |
| 1718 |
|
✗ |
RMAPI Quaternion QuaternionIdentity(void) |
| 1719 |
|
|
{ |
| 1720 |
|
|
Quaternion result = { 0.0f, 0.0f, 0.0f, 1.0f }; |
| 1721 |
|
|
|
| 1722 |
|
✗ |
return result; |
| 1723 |
|
|
} |
| 1724 |
|
|
|
| 1725 |
|
|
// Computes the length of a quaternion |
| 1726 |
|
✗ |
RMAPI float QuaternionLength(Quaternion q) |
| 1727 |
|
|
{ |
| 1728 |
|
✗ |
float result = sqrtf(q.x*q.x + q.y*q.y + q.z*q.z + q.w*q.w); |
| 1729 |
|
|
|
| 1730 |
|
✗ |
return result; |
| 1731 |
|
|
} |
| 1732 |
|
|
|
| 1733 |
|
|
// Normalize provided quaternion |
| 1734 |
|
✗ |
RMAPI Quaternion QuaternionNormalize(Quaternion q) |
| 1735 |
|
|
{ |
| 1736 |
|
|
Quaternion result = { 0 }; |
| 1737 |
|
|
|
| 1738 |
|
✗ |
float length = sqrtf(q.x*q.x + q.y*q.y + q.z*q.z + q.w*q.w); |
| 1739 |
|
✗ |
if (length == 0.0f) length = 1.0f; |
| 1740 |
|
✗ |
float ilength = 1.0f/length; |
| 1741 |
|
|
|
| 1742 |
|
✗ |
result.x = q.x*ilength; |
| 1743 |
|
✗ |
result.y = q.y*ilength; |
| 1744 |
|
✗ |
result.z = q.z*ilength; |
| 1745 |
|
✗ |
result.w = q.w*ilength; |
| 1746 |
|
|
|
| 1747 |
|
✗ |
return result; |
| 1748 |
|
|
} |
| 1749 |
|
|
|
| 1750 |
|
|
// Invert provided quaternion |
| 1751 |
|
✗ |
RMAPI Quaternion QuaternionInvert(Quaternion q) |
| 1752 |
|
|
{ |
| 1753 |
|
|
Quaternion result = q; |
| 1754 |
|
|
|
| 1755 |
|
✗ |
float lengthSq = q.x*q.x + q.y*q.y + q.z*q.z + q.w*q.w; |
| 1756 |
|
|
|
| 1757 |
|
✗ |
if (lengthSq != 0.0f) |
| 1758 |
|
|
{ |
| 1759 |
|
✗ |
float invLength = 1.0f/lengthSq; |
| 1760 |
|
|
|
| 1761 |
|
✗ |
result.x *= -invLength; |
| 1762 |
|
✗ |
result.y *= -invLength; |
| 1763 |
|
✗ |
result.z *= -invLength; |
| 1764 |
|
✗ |
result.w *= invLength; |
| 1765 |
|
|
} |
| 1766 |
|
|
|
| 1767 |
|
✗ |
return result; |
| 1768 |
|
|
} |
| 1769 |
|
|
|
| 1770 |
|
|
// Calculate two quaternion multiplication |
| 1771 |
|
✗ |
RMAPI Quaternion QuaternionMultiply(Quaternion q1, Quaternion q2) |
| 1772 |
|
|
{ |
| 1773 |
|
|
Quaternion result = { 0 }; |
| 1774 |
|
|
|
| 1775 |
|
✗ |
float qax = q1.x, qay = q1.y, qaz = q1.z, qaw = q1.w; |
| 1776 |
|
✗ |
float qbx = q2.x, qby = q2.y, qbz = q2.z, qbw = q2.w; |
| 1777 |
|
|
|
| 1778 |
|
✗ |
result.x = qax*qbw + qaw*qbx + qay*qbz - qaz*qby; |
| 1779 |
|
✗ |
result.y = qay*qbw + qaw*qby + qaz*qbx - qax*qbz; |
| 1780 |
|
✗ |
result.z = qaz*qbw + qaw*qbz + qax*qby - qay*qbx; |
| 1781 |
|
✗ |
result.w = qaw*qbw - qax*qbx - qay*qby - qaz*qbz; |
| 1782 |
|
|
|
| 1783 |
|
✗ |
return result; |
| 1784 |
|
|
} |
| 1785 |
|
|
|
| 1786 |
|
|
// Scale quaternion by float value |
| 1787 |
|
✗ |
RMAPI Quaternion QuaternionScale(Quaternion q, float mul) |
| 1788 |
|
|
{ |
| 1789 |
|
|
Quaternion result = { 0 }; |
| 1790 |
|
|
|
| 1791 |
|
✗ |
result.x = q.x*mul; |
| 1792 |
|
✗ |
result.y = q.y*mul; |
| 1793 |
|
✗ |
result.z = q.z*mul; |
| 1794 |
|
✗ |
result.w = q.w*mul; |
| 1795 |
|
|
|
| 1796 |
|
✗ |
return result; |
| 1797 |
|
|
} |
| 1798 |
|
|
|
| 1799 |
|
|
// Divide two quaternions |
| 1800 |
|
✗ |
RMAPI Quaternion QuaternionDivide(Quaternion q1, Quaternion q2) |
| 1801 |
|
|
{ |
| 1802 |
|
✗ |
Quaternion result = { q1.x/q2.x, q1.y/q2.y, q1.z/q2.z, q1.w/q2.w }; |
| 1803 |
|
|
|
| 1804 |
|
✗ |
return result; |
| 1805 |
|
|
} |
| 1806 |
|
|
|
| 1807 |
|
|
// Calculate linear interpolation between two quaternions |
| 1808 |
|
✗ |
RMAPI Quaternion QuaternionLerp(Quaternion q1, Quaternion q2, float amount) |
| 1809 |
|
|
{ |
| 1810 |
|
|
Quaternion result = { 0 }; |
| 1811 |
|
|
|
| 1812 |
|
✗ |
result.x = q1.x + amount*(q2.x - q1.x); |
| 1813 |
|
✗ |
result.y = q1.y + amount*(q2.y - q1.y); |
| 1814 |
|
✗ |
result.z = q1.z + amount*(q2.z - q1.z); |
| 1815 |
|
✗ |
result.w = q1.w + amount*(q2.w - q1.w); |
| 1816 |
|
|
|
| 1817 |
|
✗ |
return result; |
| 1818 |
|
|
} |
| 1819 |
|
|
|
| 1820 |
|
|
// Calculate slerp-optimized interpolation between two quaternions |
| 1821 |
|
✗ |
RMAPI Quaternion QuaternionNlerp(Quaternion q1, Quaternion q2, float amount) |
| 1822 |
|
|
{ |
| 1823 |
|
|
Quaternion result = { 0 }; |
| 1824 |
|
|
|
| 1825 |
|
|
// QuaternionLerp(q1, q2, amount) |
| 1826 |
|
✗ |
result.x = q1.x + amount*(q2.x - q1.x); |
| 1827 |
|
✗ |
result.y = q1.y + amount*(q2.y - q1.y); |
| 1828 |
|
✗ |
result.z = q1.z + amount*(q2.z - q1.z); |
| 1829 |
|
✗ |
result.w = q1.w + amount*(q2.w - q1.w); |
| 1830 |
|
|
|
| 1831 |
|
|
// QuaternionNormalize(q); |
| 1832 |
|
|
Quaternion q = result; |
| 1833 |
|
✗ |
float length = sqrtf(q.x*q.x + q.y*q.y + q.z*q.z + q.w*q.w); |
| 1834 |
|
✗ |
if (length == 0.0f) length = 1.0f; |
| 1835 |
|
✗ |
float ilength = 1.0f/length; |
| 1836 |
|
|
|
| 1837 |
|
✗ |
result.x = q.x*ilength; |
| 1838 |
|
✗ |
result.y = q.y*ilength; |
| 1839 |
|
✗ |
result.z = q.z*ilength; |
| 1840 |
|
✗ |
result.w = q.w*ilength; |
| 1841 |
|
|
|
| 1842 |
|
✗ |
return result; |
| 1843 |
|
|
} |
| 1844 |
|
|
|
| 1845 |
|
|
// Calculates spherical linear interpolation between two quaternions |
| 1846 |
|
✗ |
RMAPI Quaternion QuaternionSlerp(Quaternion q1, Quaternion q2, float amount) |
| 1847 |
|
|
{ |
| 1848 |
|
|
Quaternion result = { 0 }; |
| 1849 |
|
|
|
| 1850 |
|
✗ |
float cosHalfTheta = q1.x*q2.x + q1.y*q2.y + q1.z*q2.z + q1.w*q2.w; |
| 1851 |
|
|
|
| 1852 |
|
✗ |
if (cosHalfTheta < 0) |
| 1853 |
|
|
{ |
| 1854 |
|
✗ |
q2.x = -q2.x; q2.y = -q2.y; q2.z = -q2.z; q2.w = -q2.w; |
| 1855 |
|
✗ |
cosHalfTheta = -cosHalfTheta; |
| 1856 |
|
|
} |
| 1857 |
|
|
|
| 1858 |
|
✗ |
if (fabsf(cosHalfTheta) >= 1.0f) result = q1; |
| 1859 |
|
✗ |
else if (cosHalfTheta > 0.95f) result = QuaternionNlerp(q1, q2, amount); |
| 1860 |
|
|
else |
| 1861 |
|
|
{ |
| 1862 |
|
✗ |
float halfTheta = acosf(cosHalfTheta); |
| 1863 |
|
✗ |
float sinHalfTheta = sqrtf(1.0f - cosHalfTheta*cosHalfTheta); |
| 1864 |
|
|
|
| 1865 |
|
✗ |
if (fabsf(sinHalfTheta) < 0.001f) |
| 1866 |
|
|
{ |
| 1867 |
|
✗ |
result.x = (q1.x*0.5f + q2.x*0.5f); |
| 1868 |
|
✗ |
result.y = (q1.y*0.5f + q2.y*0.5f); |
| 1869 |
|
✗ |
result.z = (q1.z*0.5f + q2.z*0.5f); |
| 1870 |
|
✗ |
result.w = (q1.w*0.5f + q2.w*0.5f); |
| 1871 |
|
|
} |
| 1872 |
|
|
else |
| 1873 |
|
|
{ |
| 1874 |
|
✗ |
float ratioA = sinf((1 - amount)*halfTheta)/sinHalfTheta; |
| 1875 |
|
✗ |
float ratioB = sinf(amount*halfTheta)/sinHalfTheta; |
| 1876 |
|
|
|
| 1877 |
|
✗ |
result.x = (q1.x*ratioA + q2.x*ratioB); |
| 1878 |
|
✗ |
result.y = (q1.y*ratioA + q2.y*ratioB); |
| 1879 |
|
✗ |
result.z = (q1.z*ratioA + q2.z*ratioB); |
| 1880 |
|
✗ |
result.w = (q1.w*ratioA + q2.w*ratioB); |
| 1881 |
|
|
} |
| 1882 |
|
|
} |
| 1883 |
|
|
|
| 1884 |
|
✗ |
return result; |
| 1885 |
|
|
} |
| 1886 |
|
|
|
| 1887 |
|
|
// Calculate quaternion based on the rotation from one vector to another |
| 1888 |
|
✗ |
RMAPI Quaternion QuaternionFromVector3ToVector3(Vector3 from, Vector3 to) |
| 1889 |
|
|
{ |
| 1890 |
|
|
Quaternion result = { 0 }; |
| 1891 |
|
|
|
| 1892 |
|
✗ |
float cos2Theta = (from.x*to.x + from.y*to.y + from.z*to.z); // Vector3DotProduct(from, to) |
| 1893 |
|
✗ |
Vector3 cross = { from.y*to.z - from.z*to.y, from.z*to.x - from.x*to.z, from.x*to.y - from.y*to.x }; // Vector3CrossProduct(from, to) |
| 1894 |
|
|
|
| 1895 |
|
|
result.x = cross.x; |
| 1896 |
|
|
result.y = cross.y; |
| 1897 |
|
|
result.z = cross.z; |
| 1898 |
|
✗ |
result.w = 1.0f + cos2Theta; |
| 1899 |
|
|
|
| 1900 |
|
|
// QuaternionNormalize(q); |
| 1901 |
|
|
// NOTE: Normalize to essentially nlerp the original and identity to 0.5 |
| 1902 |
|
|
Quaternion q = result; |
| 1903 |
|
✗ |
float length = sqrtf(q.x*q.x + q.y*q.y + q.z*q.z + q.w*q.w); |
| 1904 |
|
✗ |
if (length == 0.0f) length = 1.0f; |
| 1905 |
|
✗ |
float ilength = 1.0f/length; |
| 1906 |
|
|
|
| 1907 |
|
✗ |
result.x = q.x*ilength; |
| 1908 |
|
✗ |
result.y = q.y*ilength; |
| 1909 |
|
✗ |
result.z = q.z*ilength; |
| 1910 |
|
✗ |
result.w = q.w*ilength; |
| 1911 |
|
|
|
| 1912 |
|
✗ |
return result; |
| 1913 |
|
|
} |
| 1914 |
|
|
|
| 1915 |
|
|
// Get a quaternion for a given rotation matrix |
| 1916 |
|
✗ |
RMAPI Quaternion QuaternionFromMatrix(Matrix mat) |
| 1917 |
|
|
{ |
| 1918 |
|
|
Quaternion result = { 0 }; |
| 1919 |
|
|
|
| 1920 |
|
✗ |
float fourWSquaredMinus1 = mat.m0 + mat.m5 + mat.m10; |
| 1921 |
|
✗ |
float fourXSquaredMinus1 = mat.m0 - mat.m5 - mat.m10; |
| 1922 |
|
✗ |
float fourYSquaredMinus1 = mat.m5 - mat.m0 - mat.m10; |
| 1923 |
|
✗ |
float fourZSquaredMinus1 = mat.m10 - mat.m0 - mat.m5; |
| 1924 |
|
|
|
| 1925 |
|
|
int biggestIndex = 0; |
| 1926 |
|
|
float fourBiggestSquaredMinus1 = fourWSquaredMinus1; |
| 1927 |
|
✗ |
if (fourXSquaredMinus1 > fourBiggestSquaredMinus1) |
| 1928 |
|
|
{ |
| 1929 |
|
|
fourBiggestSquaredMinus1 = fourXSquaredMinus1; |
| 1930 |
|
|
biggestIndex = 1; |
| 1931 |
|
|
} |
| 1932 |
|
|
|
| 1933 |
|
✗ |
if (fourYSquaredMinus1 > fourBiggestSquaredMinus1) |
| 1934 |
|
|
{ |
| 1935 |
|
|
fourBiggestSquaredMinus1 = fourYSquaredMinus1; |
| 1936 |
|
|
biggestIndex = 2; |
| 1937 |
|
|
} |
| 1938 |
|
|
|
| 1939 |
|
✗ |
if (fourZSquaredMinus1 > fourBiggestSquaredMinus1) |
| 1940 |
|
|
{ |
| 1941 |
|
|
fourBiggestSquaredMinus1 = fourZSquaredMinus1; |
| 1942 |
|
|
biggestIndex = 3; |
| 1943 |
|
|
} |
| 1944 |
|
|
|
| 1945 |
|
✗ |
float biggestVal = sqrtf(fourBiggestSquaredMinus1 + 1.0f) * 0.5f; |
| 1946 |
|
✗ |
float mult = 0.25f / biggestVal; |
| 1947 |
|
|
|
| 1948 |
|
✗ |
switch (biggestIndex) |
| 1949 |
|
|
{ |
| 1950 |
|
✗ |
case 0: |
| 1951 |
|
|
result.w = biggestVal; |
| 1952 |
|
✗ |
result.x = (mat.m6 - mat.m9) * mult; |
| 1953 |
|
✗ |
result.y = (mat.m8 - mat.m2) * mult; |
| 1954 |
|
✗ |
result.z = (mat.m1 - mat.m4) * mult; |
| 1955 |
|
✗ |
break; |
| 1956 |
|
✗ |
case 1: |
| 1957 |
|
|
result.x = biggestVal; |
| 1958 |
|
✗ |
result.w = (mat.m6 - mat.m9) * mult; |
| 1959 |
|
✗ |
result.y = (mat.m1 + mat.m4) * mult; |
| 1960 |
|
✗ |
result.z = (mat.m8 + mat.m2) * mult; |
| 1961 |
|
✗ |
break; |
| 1962 |
|
✗ |
case 2: |
| 1963 |
|
|
result.y = biggestVal; |
| 1964 |
|
✗ |
result.w = (mat.m8 - mat.m2) * mult; |
| 1965 |
|
✗ |
result.x = (mat.m1 + mat.m4) * mult; |
| 1966 |
|
✗ |
result.z = (mat.m6 + mat.m9) * mult; |
| 1967 |
|
✗ |
break; |
| 1968 |
|
✗ |
case 3: |
| 1969 |
|
|
result.z = biggestVal; |
| 1970 |
|
✗ |
result.w = (mat.m1 - mat.m4) * mult; |
| 1971 |
|
✗ |
result.x = (mat.m8 + mat.m2) * mult; |
| 1972 |
|
✗ |
result.y = (mat.m6 + mat.m9) * mult; |
| 1973 |
|
✗ |
break; |
| 1974 |
|
|
} |
| 1975 |
|
|
|
| 1976 |
|
✗ |
return result; |
| 1977 |
|
|
} |
| 1978 |
|
|
|
| 1979 |
|
|
// Get a matrix for a given quaternion |
| 1980 |
|
✗ |
RMAPI Matrix QuaternionToMatrix(Quaternion q) |
| 1981 |
|
|
{ |
| 1982 |
|
|
Matrix result = { 1.0f, 0.0f, 0.0f, 0.0f, |
| 1983 |
|
|
0.0f, 1.0f, 0.0f, 0.0f, |
| 1984 |
|
|
0.0f, 0.0f, 1.0f, 0.0f, |
| 1985 |
|
|
0.0f, 0.0f, 0.0f, 1.0f }; // MatrixIdentity() |
| 1986 |
|
|
|
| 1987 |
|
✗ |
float a2 = q.x*q.x; |
| 1988 |
|
✗ |
float b2 = q.y*q.y; |
| 1989 |
|
✗ |
float c2 = q.z*q.z; |
| 1990 |
|
✗ |
float ac = q.x*q.z; |
| 1991 |
|
✗ |
float ab = q.x*q.y; |
| 1992 |
|
✗ |
float bc = q.y*q.z; |
| 1993 |
|
✗ |
float ad = q.w*q.x; |
| 1994 |
|
✗ |
float bd = q.w*q.y; |
| 1995 |
|
✗ |
float cd = q.w*q.z; |
| 1996 |
|
|
|
| 1997 |
|
✗ |
result.m0 = 1 - 2*(b2 + c2); |
| 1998 |
|
✗ |
result.m1 = 2*(ab + cd); |
| 1999 |
|
✗ |
result.m2 = 2*(ac - bd); |
| 2000 |
|
|
|
| 2001 |
|
✗ |
result.m4 = 2*(ab - cd); |
| 2002 |
|
✗ |
result.m5 = 1 - 2*(a2 + c2); |
| 2003 |
|
✗ |
result.m6 = 2*(bc + ad); |
| 2004 |
|
|
|
| 2005 |
|
✗ |
result.m8 = 2*(ac + bd); |
| 2006 |
|
✗ |
result.m9 = 2*(bc - ad); |
| 2007 |
|
✗ |
result.m10 = 1 - 2*(a2 + b2); |
| 2008 |
|
|
|
| 2009 |
|
✗ |
return result; |
| 2010 |
|
|
} |
| 2011 |
|
|
|
| 2012 |
|
|
// Get rotation quaternion for an angle and axis |
| 2013 |
|
|
// NOTE: Angle must be provided in radians |
| 2014 |
|
✗ |
RMAPI Quaternion QuaternionFromAxisAngle(Vector3 axis, float angle) |
| 2015 |
|
|
{ |
| 2016 |
|
|
Quaternion result = { 0.0f, 0.0f, 0.0f, 1.0f }; |
| 2017 |
|
|
|
| 2018 |
|
✗ |
float axisLength = sqrtf(axis.x*axis.x + axis.y*axis.y + axis.z*axis.z); |
| 2019 |
|
|
|
| 2020 |
|
✗ |
if (axisLength != 0.0f) |
| 2021 |
|
|
{ |
| 2022 |
|
✗ |
angle *= 0.5f; |
| 2023 |
|
|
|
| 2024 |
|
|
float length = 0.0f; |
| 2025 |
|
|
float ilength = 0.0f; |
| 2026 |
|
|
|
| 2027 |
|
|
// Vector3Normalize(axis) |
| 2028 |
|
|
Vector3 v = axis; |
| 2029 |
|
✗ |
length = sqrtf(v.x*v.x + v.y*v.y + v.z*v.z); |
| 2030 |
|
✗ |
if (length == 0.0f) length = 1.0f; |
| 2031 |
|
✗ |
ilength = 1.0f/length; |
| 2032 |
|
✗ |
axis.x *= ilength; |
| 2033 |
|
✗ |
axis.y *= ilength; |
| 2034 |
|
✗ |
axis.z *= ilength; |
| 2035 |
|
|
|
| 2036 |
|
✗ |
float sinres = sinf(angle); |
| 2037 |
|
✗ |
float cosres = cosf(angle); |
| 2038 |
|
|
|
| 2039 |
|
✗ |
result.x = axis.x*sinres; |
| 2040 |
|
✗ |
result.y = axis.y*sinres; |
| 2041 |
|
✗ |
result.z = axis.z*sinres; |
| 2042 |
|
|
result.w = cosres; |
| 2043 |
|
|
|
| 2044 |
|
|
// QuaternionNormalize(q); |
| 2045 |
|
|
Quaternion q = result; |
| 2046 |
|
✗ |
length = sqrtf(q.x*q.x + q.y*q.y + q.z*q.z + q.w*q.w); |
| 2047 |
|
✗ |
if (length == 0.0f) length = 1.0f; |
| 2048 |
|
✗ |
ilength = 1.0f/length; |
| 2049 |
|
✗ |
result.x = q.x*ilength; |
| 2050 |
|
✗ |
result.y = q.y*ilength; |
| 2051 |
|
✗ |
result.z = q.z*ilength; |
| 2052 |
|
✗ |
result.w = q.w*ilength; |
| 2053 |
|
|
} |
| 2054 |
|
|
|
| 2055 |
|
✗ |
return result; |
| 2056 |
|
|
} |
| 2057 |
|
|
|
| 2058 |
|
|
// Get the rotation angle and axis for a given quaternion |
| 2059 |
|
✗ |
RMAPI void QuaternionToAxisAngle(Quaternion q, Vector3 *outAxis, float *outAngle) |
| 2060 |
|
|
{ |
| 2061 |
|
✗ |
if (fabsf(q.w) > 1.0f) |
| 2062 |
|
|
{ |
| 2063 |
|
|
// QuaternionNormalize(q); |
| 2064 |
|
✗ |
float length = sqrtf(q.x*q.x + q.y*q.y + q.z*q.z + q.w*q.w); |
| 2065 |
|
✗ |
if (length == 0.0f) length = 1.0f; |
| 2066 |
|
✗ |
float ilength = 1.0f/length; |
| 2067 |
|
|
|
| 2068 |
|
✗ |
q.x = q.x*ilength; |
| 2069 |
|
✗ |
q.y = q.y*ilength; |
| 2070 |
|
✗ |
q.z = q.z*ilength; |
| 2071 |
|
✗ |
q.w = q.w*ilength; |
| 2072 |
|
|
} |
| 2073 |
|
|
|
| 2074 |
|
|
Vector3 resAxis = { 0.0f, 0.0f, 0.0f }; |
| 2075 |
|
✗ |
float resAngle = 2.0f*acosf(q.w); |
| 2076 |
|
✗ |
float den = sqrtf(1.0f - q.w*q.w); |
| 2077 |
|
|
|
| 2078 |
|
✗ |
if (den > 0.0001f) |
| 2079 |
|
|
{ |
| 2080 |
|
✗ |
resAxis.x = q.x/den; |
| 2081 |
|
✗ |
resAxis.y = q.y/den; |
| 2082 |
|
✗ |
resAxis.z = q.z/den; |
| 2083 |
|
|
} |
| 2084 |
|
|
else |
| 2085 |
|
|
{ |
| 2086 |
|
|
// This occurs when the angle is zero. |
| 2087 |
|
|
// Not a problem: just set an arbitrary normalized axis. |
| 2088 |
|
|
resAxis.x = 1.0f; |
| 2089 |
|
|
} |
| 2090 |
|
|
|
| 2091 |
|
✗ |
*outAxis = resAxis; |
| 2092 |
|
✗ |
*outAngle = resAngle; |
| 2093 |
|
|
} |
| 2094 |
|
|
|
| 2095 |
|
|
// Get the quaternion equivalent to Euler angles |
| 2096 |
|
|
// NOTE: Rotation order is ZYX |
| 2097 |
|
✗ |
RMAPI Quaternion QuaternionFromEuler(float pitch, float yaw, float roll) |
| 2098 |
|
|
{ |
| 2099 |
|
|
Quaternion result = { 0 }; |
| 2100 |
|
|
|
| 2101 |
|
✗ |
float x0 = cosf(pitch*0.5f); |
| 2102 |
|
✗ |
float x1 = sinf(pitch*0.5f); |
| 2103 |
|
✗ |
float y0 = cosf(yaw*0.5f); |
| 2104 |
|
✗ |
float y1 = sinf(yaw*0.5f); |
| 2105 |
|
✗ |
float z0 = cosf(roll*0.5f); |
| 2106 |
|
✗ |
float z1 = sinf(roll*0.5f); |
| 2107 |
|
|
|
| 2108 |
|
✗ |
result.x = x1*y0*z0 - x0*y1*z1; |
| 2109 |
|
✗ |
result.y = x0*y1*z0 + x1*y0*z1; |
| 2110 |
|
✗ |
result.z = x0*y0*z1 - x1*y1*z0; |
| 2111 |
|
✗ |
result.w = x0*y0*z0 + x1*y1*z1; |
| 2112 |
|
|
|
| 2113 |
|
✗ |
return result; |
| 2114 |
|
|
} |
| 2115 |
|
|
|
| 2116 |
|
|
// Get the Euler angles equivalent to quaternion (roll, pitch, yaw) |
| 2117 |
|
|
// NOTE: Angles are returned in a Vector3 struct in radians |
| 2118 |
|
✗ |
RMAPI Vector3 QuaternionToEuler(Quaternion q) |
| 2119 |
|
|
{ |
| 2120 |
|
|
Vector3 result = { 0 }; |
| 2121 |
|
|
|
| 2122 |
|
|
// Roll (x-axis rotation) |
| 2123 |
|
✗ |
float x0 = 2.0f*(q.w*q.x + q.y*q.z); |
| 2124 |
|
✗ |
float x1 = 1.0f - 2.0f*(q.x*q.x + q.y*q.y); |
| 2125 |
|
✗ |
result.x = atan2f(x0, x1); |
| 2126 |
|
|
|
| 2127 |
|
|
// Pitch (y-axis rotation) |
| 2128 |
|
✗ |
float y0 = 2.0f*(q.w*q.y - q.z*q.x); |
| 2129 |
|
✗ |
y0 = y0 > 1.0f ? 1.0f : y0; |
| 2130 |
|
✗ |
y0 = y0 < -1.0f ? -1.0f : y0; |
| 2131 |
|
✗ |
result.y = asinf(y0); |
| 2132 |
|
|
|
| 2133 |
|
|
// Yaw (z-axis rotation) |
| 2134 |
|
✗ |
float z0 = 2.0f*(q.w*q.z + q.x*q.y); |
| 2135 |
|
✗ |
float z1 = 1.0f - 2.0f*(q.y*q.y + q.z*q.z); |
| 2136 |
|
✗ |
result.z = atan2f(z0, z1); |
| 2137 |
|
|
|
| 2138 |
|
✗ |
return result; |
| 2139 |
|
|
} |
| 2140 |
|
|
|
| 2141 |
|
|
// Transform a quaternion given a transformation matrix |
| 2142 |
|
✗ |
RMAPI Quaternion QuaternionTransform(Quaternion q, Matrix mat) |
| 2143 |
|
|
{ |
| 2144 |
|
|
Quaternion result = { 0 }; |
| 2145 |
|
|
|
| 2146 |
|
✗ |
result.x = mat.m0*q.x + mat.m4*q.y + mat.m8*q.z + mat.m12*q.w; |
| 2147 |
|
✗ |
result.y = mat.m1*q.x + mat.m5*q.y + mat.m9*q.z + mat.m13*q.w; |
| 2148 |
|
✗ |
result.z = mat.m2*q.x + mat.m6*q.y + mat.m10*q.z + mat.m14*q.w; |
| 2149 |
|
✗ |
result.w = mat.m3*q.x + mat.m7*q.y + mat.m11*q.z + mat.m15*q.w; |
| 2150 |
|
|
|
| 2151 |
|
✗ |
return result; |
| 2152 |
|
|
} |
| 2153 |
|
|
|
| 2154 |
|
|
// Check whether two given quaternions are almost equal |
| 2155 |
|
✗ |
RMAPI int QuaternionEquals(Quaternion p, Quaternion q) |
| 2156 |
|
|
{ |
| 2157 |
|
✗ |
int result = (((fabsf(p.x - q.x)) <= (EPSILON*fmaxf(1.0f, fmaxf(fabsf(p.x), fabsf(q.x))))) && |
| 2158 |
|
✗ |
((fabsf(p.y - q.y)) <= (EPSILON*fmaxf(1.0f, fmaxf(fabsf(p.y), fabsf(q.y))))) && |
| 2159 |
|
✗ |
((fabsf(p.z - q.z)) <= (EPSILON*fmaxf(1.0f, fmaxf(fabsf(p.z), fabsf(q.z))))) && |
| 2160 |
|
✗ |
((fabsf(p.w - q.w)) <= (EPSILON*fmaxf(1.0f, fmaxf(fabsf(p.w), fabsf(q.w)))))) || |
| 2161 |
|
✗ |
(((fabsf(p.x + q.x)) <= (EPSILON*fmaxf(1.0f, fmaxf(fabsf(p.x), fabsf(q.x))))) && |
| 2162 |
|
✗ |
((fabsf(p.y + q.y)) <= (EPSILON*fmaxf(1.0f, fmaxf(fabsf(p.y), fabsf(q.y))))) && |
| 2163 |
|
✗ |
((fabsf(p.z + q.z)) <= (EPSILON*fmaxf(1.0f, fmaxf(fabsf(p.z), fabsf(q.z))))) && |
| 2164 |
|
✗ |
((fabsf(p.w + q.w)) <= (EPSILON*fmaxf(1.0f, fmaxf(fabsf(p.w), fabsf(q.w)))))); |
| 2165 |
|
|
|
| 2166 |
|
✗ |
return result; |
| 2167 |
|
|
} |
| 2168 |
|
|
|
| 2169 |
|
|
#endif // RAYMATH_H |
| 2170 |
|
|
|