Line |
Branch |
Exec |
Source |
1 |
|
|
/********************************************************************************************** |
2 |
|
|
* |
3 |
|
|
* raymath v1.5 - Math functions to work with Vector2, Vector3, Matrix and Quaternions |
4 |
|
|
* |
5 |
|
|
* CONVENTIONS: |
6 |
|
|
* - Matrix structure is defined as row-major (memory layout) but parameters naming AND all |
7 |
|
|
* math operations performed by the library consider the structure as it was column-major |
8 |
|
|
* It is like transposed versions of the matrices are used for all the maths |
9 |
|
|
* It benefits some functions making them cache-friendly and also avoids matrix |
10 |
|
|
* transpositions sometimes required by OpenGL |
11 |
|
|
* Example: In memory order, row0 is [m0 m4 m8 m12] but in semantic math row0 is [m0 m1 m2 m3] |
12 |
|
|
* - Functions are always self-contained, no function use another raymath function inside, |
13 |
|
|
* required code is directly re-implemented inside |
14 |
|
|
* - Functions input parameters are always received by value (2 unavoidable exceptions) |
15 |
|
|
* - Functions use always a "result" variable for return |
16 |
|
|
* - Functions are always defined inline |
17 |
|
|
* - Angles are always in radians (DEG2RAD/RAD2DEG macros provided for convenience) |
18 |
|
|
* - No compound literals used to make sure libray is compatible with C++ |
19 |
|
|
* |
20 |
|
|
* CONFIGURATION: |
21 |
|
|
* #define RAYMATH_IMPLEMENTATION |
22 |
|
|
* Generates the implementation of the library into the included file. |
23 |
|
|
* If not defined, the library is in header only mode and can be included in other headers |
24 |
|
|
* or source files without problems. But only ONE file should hold the implementation. |
25 |
|
|
* |
26 |
|
|
* #define RAYMATH_STATIC_INLINE |
27 |
|
|
* Define static inline functions code, so #include header suffices for use. |
28 |
|
|
* This may use up lots of memory. |
29 |
|
|
* |
30 |
|
|
* |
31 |
|
|
* LICENSE: zlib/libpng |
32 |
|
|
* |
33 |
|
|
* Copyright (c) 2015-2023 Ramon Santamaria (@raysan5) |
34 |
|
|
* |
35 |
|
|
* This software is provided "as-is", without any express or implied warranty. In no event |
36 |
|
|
* will the authors be held liable for any damages arising from the use of this software. |
37 |
|
|
* |
38 |
|
|
* Permission is granted to anyone to use this software for any purpose, including commercial |
39 |
|
|
* applications, and to alter it and redistribute it freely, subject to the following restrictions: |
40 |
|
|
* |
41 |
|
|
* 1. The origin of this software must not be misrepresented; you must not claim that you |
42 |
|
|
* wrote the original software. If you use this software in a product, an acknowledgment |
43 |
|
|
* in the product documentation would be appreciated but is not required. |
44 |
|
|
* |
45 |
|
|
* 2. Altered source versions must be plainly marked as such, and must not be misrepresented |
46 |
|
|
* as being the original software. |
47 |
|
|
* |
48 |
|
|
* 3. This notice may not be removed or altered from any source distribution. |
49 |
|
|
* |
50 |
|
|
**********************************************************************************************/ |
51 |
|
|
|
52 |
|
|
#ifndef RAYMATH_H |
53 |
|
|
#define RAYMATH_H |
54 |
|
|
|
55 |
|
|
#if defined(RAYMATH_IMPLEMENTATION) && defined(RAYMATH_STATIC_INLINE) |
56 |
|
|
#error "Specifying both RAYMATH_IMPLEMENTATION and RAYMATH_STATIC_INLINE is contradictory" |
57 |
|
|
#endif |
58 |
|
|
|
59 |
|
|
// Function specifiers definition |
60 |
|
|
#if defined(RAYMATH_IMPLEMENTATION) |
61 |
|
|
#if defined(_WIN32) && defined(BUILD_LIBTYPE_SHARED) |
62 |
|
|
#define RMAPI __declspec(dllexport) extern inline // We are building raylib as a Win32 shared library (.dll). |
63 |
|
|
#elif defined(_WIN32) && defined(USE_LIBTYPE_SHARED) |
64 |
|
|
#define RMAPI __declspec(dllimport) // We are using raylib as a Win32 shared library (.dll) |
65 |
|
|
#else |
66 |
|
|
#define RMAPI extern inline // Provide external definition |
67 |
|
|
#endif |
68 |
|
|
#elif defined(RAYMATH_STATIC_INLINE) |
69 |
|
|
#define RMAPI static inline // Functions may be inlined, no external out-of-line definition |
70 |
|
|
#else |
71 |
|
|
#if defined(__TINYC__) |
72 |
|
|
#define RMAPI static inline // plain inline not supported by tinycc (See issue #435) |
73 |
|
|
#else |
74 |
|
|
#define RMAPI inline // Functions may be inlined or external definition used |
75 |
|
|
#endif |
76 |
|
|
#endif |
77 |
|
|
|
78 |
|
|
//---------------------------------------------------------------------------------- |
79 |
|
|
// Defines and Macros |
80 |
|
|
//---------------------------------------------------------------------------------- |
81 |
|
|
#ifndef PI |
82 |
|
|
#define PI 3.14159265358979323846f |
83 |
|
|
#endif |
84 |
|
|
|
85 |
|
|
#ifndef EPSILON |
86 |
|
|
#define EPSILON 0.000001f |
87 |
|
|
#endif |
88 |
|
|
|
89 |
|
|
#ifndef DEG2RAD |
90 |
|
|
#define DEG2RAD (PI/180.0f) |
91 |
|
|
#endif |
92 |
|
|
|
93 |
|
|
#ifndef RAD2DEG |
94 |
|
|
#define RAD2DEG (180.0f/PI) |
95 |
|
|
#endif |
96 |
|
|
|
97 |
|
|
// Get float vector for Matrix |
98 |
|
|
#ifndef MatrixToFloat |
99 |
|
|
#define MatrixToFloat(mat) (MatrixToFloatV(mat).v) |
100 |
|
|
#endif |
101 |
|
|
|
102 |
|
|
// Get float vector for Vector3 |
103 |
|
|
#ifndef Vector3ToFloat |
104 |
|
|
#define Vector3ToFloat(vec) (Vector3ToFloatV(vec).v) |
105 |
|
|
#endif |
106 |
|
|
|
107 |
|
|
//---------------------------------------------------------------------------------- |
108 |
|
|
// Types and Structures Definition |
109 |
|
|
//---------------------------------------------------------------------------------- |
110 |
|
|
#if !defined(RL_VECTOR2_TYPE) |
111 |
|
|
// Vector2 type |
112 |
|
|
typedef struct Vector2 { |
113 |
|
|
float x; |
114 |
|
|
float y; |
115 |
|
|
} Vector2; |
116 |
|
|
#define RL_VECTOR2_TYPE |
117 |
|
|
#endif |
118 |
|
|
|
119 |
|
|
#if !defined(RL_VECTOR3_TYPE) |
120 |
|
|
// Vector3 type |
121 |
|
|
typedef struct Vector3 { |
122 |
|
|
float x; |
123 |
|
|
float y; |
124 |
|
|
float z; |
125 |
|
|
} Vector3; |
126 |
|
|
#define RL_VECTOR3_TYPE |
127 |
|
|
#endif |
128 |
|
|
|
129 |
|
|
#if !defined(RL_VECTOR4_TYPE) |
130 |
|
|
// Vector4 type |
131 |
|
|
typedef struct Vector4 { |
132 |
|
|
float x; |
133 |
|
|
float y; |
134 |
|
|
float z; |
135 |
|
|
float w; |
136 |
|
|
} Vector4; |
137 |
|
|
#define RL_VECTOR4_TYPE |
138 |
|
|
#endif |
139 |
|
|
|
140 |
|
|
#if !defined(RL_QUATERNION_TYPE) |
141 |
|
|
// Quaternion type |
142 |
|
|
typedef Vector4 Quaternion; |
143 |
|
|
#define RL_QUATERNION_TYPE |
144 |
|
|
#endif |
145 |
|
|
|
146 |
|
|
#if !defined(RL_MATRIX_TYPE) |
147 |
|
|
// Matrix type (OpenGL style 4x4 - right handed, column major) |
148 |
|
|
typedef struct Matrix { |
149 |
|
|
float m0, m4, m8, m12; // Matrix first row (4 components) |
150 |
|
|
float m1, m5, m9, m13; // Matrix second row (4 components) |
151 |
|
|
float m2, m6, m10, m14; // Matrix third row (4 components) |
152 |
|
|
float m3, m7, m11, m15; // Matrix fourth row (4 components) |
153 |
|
|
} Matrix; |
154 |
|
|
#define RL_MATRIX_TYPE |
155 |
|
|
#endif |
156 |
|
|
|
157 |
|
|
// NOTE: Helper types to be used instead of array return types for *ToFloat functions |
158 |
|
|
typedef struct float3 { |
159 |
|
|
float v[3]; |
160 |
|
|
} float3; |
161 |
|
|
|
162 |
|
|
typedef struct float16 { |
163 |
|
|
float v[16]; |
164 |
|
|
} float16; |
165 |
|
|
|
166 |
|
|
#include <math.h> // Required for: sinf(), cosf(), tan(), atan2f(), sqrtf(), floor(), fminf(), fmaxf(), fabs() |
167 |
|
|
|
168 |
|
|
//---------------------------------------------------------------------------------- |
169 |
|
|
// Module Functions Definition - Utils math |
170 |
|
|
//---------------------------------------------------------------------------------- |
171 |
|
|
|
172 |
|
|
// Clamp float value |
173 |
|
✗ |
RMAPI float Clamp(float value, float min, float max) |
174 |
|
|
{ |
175 |
|
✗ |
float result = (value < min)? min : value; |
176 |
|
|
|
177 |
|
✗ |
if (result > max) result = max; |
178 |
|
|
|
179 |
|
✗ |
return result; |
180 |
|
|
} |
181 |
|
|
|
182 |
|
|
// Calculate linear interpolation between two floats |
183 |
|
✗ |
RMAPI float Lerp(float start, float end, float amount) |
184 |
|
|
{ |
185 |
|
✗ |
float result = start + amount*(end - start); |
186 |
|
|
|
187 |
|
✗ |
return result; |
188 |
|
|
} |
189 |
|
|
|
190 |
|
|
// Normalize input value within input range |
191 |
|
✗ |
RMAPI float Normalize(float value, float start, float end) |
192 |
|
|
{ |
193 |
|
✗ |
float result = (value - start)/(end - start); |
194 |
|
|
|
195 |
|
✗ |
return result; |
196 |
|
|
} |
197 |
|
|
|
198 |
|
|
// Remap input value within input range to output range |
199 |
|
✗ |
RMAPI float Remap(float value, float inputStart, float inputEnd, float outputStart, float outputEnd) |
200 |
|
|
{ |
201 |
|
✗ |
float result = (value - inputStart)/(inputEnd - inputStart)*(outputEnd - outputStart) + outputStart; |
202 |
|
|
|
203 |
|
✗ |
return result; |
204 |
|
|
} |
205 |
|
|
|
206 |
|
|
// Wrap input value from min to max |
207 |
|
✗ |
RMAPI float Wrap(float value, float min, float max) |
208 |
|
|
{ |
209 |
|
✗ |
float result = value - (max - min)*floorf((value - min)/(max - min)); |
210 |
|
|
|
211 |
|
✗ |
return result; |
212 |
|
|
} |
213 |
|
|
|
214 |
|
|
// Check whether two given floats are almost equal |
215 |
|
✗ |
RMAPI int FloatEquals(float x, float y) |
216 |
|
|
{ |
217 |
|
✗ |
int result = (fabsf(x - y)) <= (EPSILON*fmaxf(1.0f, fmaxf(fabsf(x), fabsf(y)))); |
218 |
|
|
|
219 |
|
✗ |
return result; |
220 |
|
|
} |
221 |
|
|
|
222 |
|
|
//---------------------------------------------------------------------------------- |
223 |
|
|
// Module Functions Definition - Vector2 math |
224 |
|
|
//---------------------------------------------------------------------------------- |
225 |
|
|
|
226 |
|
|
// Vector with components value 0.0f |
227 |
|
✗ |
RMAPI Vector2 Vector2Zero(void) |
228 |
|
|
{ |
229 |
|
|
Vector2 result = { 0.0f, 0.0f }; |
230 |
|
|
|
231 |
|
✗ |
return result; |
232 |
|
|
} |
233 |
|
|
|
234 |
|
|
// Vector with components value 1.0f |
235 |
|
✗ |
RMAPI Vector2 Vector2One(void) |
236 |
|
|
{ |
237 |
|
|
Vector2 result = { 1.0f, 1.0f }; |
238 |
|
|
|
239 |
|
✗ |
return result; |
240 |
|
|
} |
241 |
|
|
|
242 |
|
|
// Add two vectors (v1 + v2) |
243 |
|
✗ |
RMAPI Vector2 Vector2Add(Vector2 v1, Vector2 v2) |
244 |
|
|
{ |
245 |
|
✗ |
Vector2 result = { v1.x + v2.x, v1.y + v2.y }; |
246 |
|
|
|
247 |
|
✗ |
return result; |
248 |
|
|
} |
249 |
|
|
|
250 |
|
|
// Add vector and float value |
251 |
|
✗ |
RMAPI Vector2 Vector2AddValue(Vector2 v, float add) |
252 |
|
|
{ |
253 |
|
✗ |
Vector2 result = { v.x + add, v.y + add }; |
254 |
|
|
|
255 |
|
✗ |
return result; |
256 |
|
|
} |
257 |
|
|
|
258 |
|
|
// Subtract two vectors (v1 - v2) |
259 |
|
✗ |
RMAPI Vector2 Vector2Subtract(Vector2 v1, Vector2 v2) |
260 |
|
|
{ |
261 |
|
✗ |
Vector2 result = { v1.x - v2.x, v1.y - v2.y }; |
262 |
|
|
|
263 |
|
✗ |
return result; |
264 |
|
|
} |
265 |
|
|
|
266 |
|
|
// Subtract vector by float value |
267 |
|
✗ |
RMAPI Vector2 Vector2SubtractValue(Vector2 v, float sub) |
268 |
|
|
{ |
269 |
|
✗ |
Vector2 result = { v.x - sub, v.y - sub }; |
270 |
|
|
|
271 |
|
✗ |
return result; |
272 |
|
|
} |
273 |
|
|
|
274 |
|
|
// Calculate vector length |
275 |
|
✗ |
RMAPI float Vector2Length(Vector2 v) |
276 |
|
|
{ |
277 |
|
✗ |
float result = sqrtf((v.x*v.x) + (v.y*v.y)); |
278 |
|
|
|
279 |
|
✗ |
return result; |
280 |
|
|
} |
281 |
|
|
|
282 |
|
|
// Calculate vector square length |
283 |
|
✗ |
RMAPI float Vector2LengthSqr(Vector2 v) |
284 |
|
|
{ |
285 |
|
✗ |
float result = (v.x*v.x) + (v.y*v.y); |
286 |
|
|
|
287 |
|
✗ |
return result; |
288 |
|
|
} |
289 |
|
|
|
290 |
|
|
// Calculate two vectors dot product |
291 |
|
✗ |
RMAPI float Vector2DotProduct(Vector2 v1, Vector2 v2) |
292 |
|
|
{ |
293 |
|
✗ |
float result = (v1.x*v2.x + v1.y*v2.y); |
294 |
|
|
|
295 |
|
✗ |
return result; |
296 |
|
|
} |
297 |
|
|
|
298 |
|
|
// Calculate distance between two vectors |
299 |
|
✗ |
RMAPI float Vector2Distance(Vector2 v1, Vector2 v2) |
300 |
|
|
{ |
301 |
|
✗ |
float result = sqrtf((v1.x - v2.x)*(v1.x - v2.x) + (v1.y - v2.y)*(v1.y - v2.y)); |
302 |
|
|
|
303 |
|
✗ |
return result; |
304 |
|
|
} |
305 |
|
|
|
306 |
|
|
// Calculate square distance between two vectors |
307 |
|
✗ |
RMAPI float Vector2DistanceSqr(Vector2 v1, Vector2 v2) |
308 |
|
|
{ |
309 |
|
✗ |
float result = ((v1.x - v2.x)*(v1.x - v2.x) + (v1.y - v2.y)*(v1.y - v2.y)); |
310 |
|
|
|
311 |
|
✗ |
return result; |
312 |
|
|
} |
313 |
|
|
|
314 |
|
|
// Calculate angle between two vectors |
315 |
|
|
// NOTE: Angle is calculated from origin point (0, 0) |
316 |
|
✗ |
RMAPI float Vector2Angle(Vector2 v1, Vector2 v2) |
317 |
|
|
{ |
318 |
|
|
float result = 0.0f; |
319 |
|
|
|
320 |
|
✗ |
float dot = v1.x*v2.x + v1.y*v2.y; |
321 |
|
✗ |
float det = v1.x*v2.y - v1.y*v2.x; |
322 |
|
✗ |
result = -atan2f(det, dot); |
323 |
|
|
|
324 |
|
✗ |
return result; |
325 |
|
|
} |
326 |
|
|
|
327 |
|
|
// Calculate angle defined by a two vectors line |
328 |
|
|
// NOTE: Parameters need to be normalized |
329 |
|
|
// Current implementation should be aligned with glm::angle |
330 |
|
✗ |
RMAPI float Vector2LineAngle(Vector2 start, Vector2 end) |
331 |
|
|
{ |
332 |
|
|
float result = 0.0f; |
333 |
|
|
|
334 |
|
✗ |
result = atan2f(end.y - start.y, end.x - start.x); |
335 |
|
|
|
336 |
|
✗ |
return result; |
337 |
|
|
} |
338 |
|
|
|
339 |
|
|
// Scale vector (multiply by value) |
340 |
|
✗ |
RMAPI Vector2 Vector2Scale(Vector2 v, float scale) |
341 |
|
|
{ |
342 |
|
✗ |
Vector2 result = { v.x*scale, v.y*scale }; |
343 |
|
|
|
344 |
|
✗ |
return result; |
345 |
|
|
} |
346 |
|
|
|
347 |
|
|
// Multiply vector by vector |
348 |
|
✗ |
RMAPI Vector2 Vector2Multiply(Vector2 v1, Vector2 v2) |
349 |
|
|
{ |
350 |
|
✗ |
Vector2 result = { v1.x*v2.x, v1.y*v2.y }; |
351 |
|
|
|
352 |
|
✗ |
return result; |
353 |
|
|
} |
354 |
|
|
|
355 |
|
|
// Negate vector |
356 |
|
✗ |
RMAPI Vector2 Vector2Negate(Vector2 v) |
357 |
|
|
{ |
358 |
|
✗ |
Vector2 result = { -v.x, -v.y }; |
359 |
|
|
|
360 |
|
✗ |
return result; |
361 |
|
|
} |
362 |
|
|
|
363 |
|
|
// Divide vector by vector |
364 |
|
✗ |
RMAPI Vector2 Vector2Divide(Vector2 v1, Vector2 v2) |
365 |
|
|
{ |
366 |
|
✗ |
Vector2 result = { v1.x/v2.x, v1.y/v2.y }; |
367 |
|
|
|
368 |
|
✗ |
return result; |
369 |
|
|
} |
370 |
|
|
|
371 |
|
|
// Normalize provided vector |
372 |
|
✗ |
RMAPI Vector2 Vector2Normalize(Vector2 v) |
373 |
|
|
{ |
374 |
|
|
Vector2 result = { 0 }; |
375 |
|
✗ |
float length = sqrtf((v.x*v.x) + (v.y*v.y)); |
376 |
|
|
|
377 |
|
✗ |
if (length > 0) |
378 |
|
|
{ |
379 |
|
✗ |
float ilength = 1.0f/length; |
380 |
|
✗ |
result.x = v.x*ilength; |
381 |
|
✗ |
result.y = v.y*ilength; |
382 |
|
|
} |
383 |
|
|
|
384 |
|
✗ |
return result; |
385 |
|
|
} |
386 |
|
|
|
387 |
|
|
// Transforms a Vector2 by a given Matrix |
388 |
|
✗ |
RMAPI Vector2 Vector2Transform(Vector2 v, Matrix mat) |
389 |
|
|
{ |
390 |
|
|
Vector2 result = { 0 }; |
391 |
|
|
|
392 |
|
✗ |
float x = v.x; |
393 |
|
✗ |
float y = v.y; |
394 |
|
|
float z = 0; |
395 |
|
|
|
396 |
|
✗ |
result.x = mat.m0*x + mat.m4*y + mat.m8*z + mat.m12; |
397 |
|
✗ |
result.y = mat.m1*x + mat.m5*y + mat.m9*z + mat.m13; |
398 |
|
|
|
399 |
|
✗ |
return result; |
400 |
|
|
} |
401 |
|
|
|
402 |
|
|
// Calculate linear interpolation between two vectors |
403 |
|
✗ |
RMAPI Vector2 Vector2Lerp(Vector2 v1, Vector2 v2, float amount) |
404 |
|
|
{ |
405 |
|
|
Vector2 result = { 0 }; |
406 |
|
|
|
407 |
|
✗ |
result.x = v1.x + amount*(v2.x - v1.x); |
408 |
|
✗ |
result.y = v1.y + amount*(v2.y - v1.y); |
409 |
|
|
|
410 |
|
✗ |
return result; |
411 |
|
|
} |
412 |
|
|
|
413 |
|
|
// Calculate reflected vector to normal |
414 |
|
✗ |
RMAPI Vector2 Vector2Reflect(Vector2 v, Vector2 normal) |
415 |
|
|
{ |
416 |
|
|
Vector2 result = { 0 }; |
417 |
|
|
|
418 |
|
✗ |
float dotProduct = (v.x*normal.x + v.y*normal.y); // Dot product |
419 |
|
|
|
420 |
|
✗ |
result.x = v.x - (2.0f*normal.x)*dotProduct; |
421 |
|
✗ |
result.y = v.y - (2.0f*normal.y)*dotProduct; |
422 |
|
|
|
423 |
|
✗ |
return result; |
424 |
|
|
} |
425 |
|
|
|
426 |
|
|
// Rotate vector by angle |
427 |
|
✗ |
RMAPI Vector2 Vector2Rotate(Vector2 v, float angle) |
428 |
|
|
{ |
429 |
|
|
Vector2 result = { 0 }; |
430 |
|
|
|
431 |
|
✗ |
float cosres = cosf(angle); |
432 |
|
✗ |
float sinres = sinf(angle); |
433 |
|
|
|
434 |
|
✗ |
result.x = v.x*cosres - v.y*sinres; |
435 |
|
✗ |
result.y = v.x*sinres + v.y*cosres; |
436 |
|
|
|
437 |
|
✗ |
return result; |
438 |
|
|
} |
439 |
|
|
|
440 |
|
|
// Move Vector towards target |
441 |
|
✗ |
RMAPI Vector2 Vector2MoveTowards(Vector2 v, Vector2 target, float maxDistance) |
442 |
|
|
{ |
443 |
|
|
Vector2 result = { 0 }; |
444 |
|
|
|
445 |
|
✗ |
float dx = target.x - v.x; |
446 |
|
✗ |
float dy = target.y - v.y; |
447 |
|
✗ |
float value = (dx*dx) + (dy*dy); |
448 |
|
|
|
449 |
|
✗ |
if ((value == 0) || ((maxDistance >= 0) && (value <= maxDistance*maxDistance))) return target; |
450 |
|
|
|
451 |
|
✗ |
float dist = sqrtf(value); |
452 |
|
|
|
453 |
|
✗ |
result.x = v.x + dx/dist*maxDistance; |
454 |
|
✗ |
result.y = v.y + dy/dist*maxDistance; |
455 |
|
|
|
456 |
|
✗ |
return result; |
457 |
|
|
} |
458 |
|
|
|
459 |
|
|
// Invert the given vector |
460 |
|
✗ |
RMAPI Vector2 Vector2Invert(Vector2 v) |
461 |
|
|
{ |
462 |
|
✗ |
Vector2 result = { 1.0f/v.x, 1.0f/v.y }; |
463 |
|
|
|
464 |
|
✗ |
return result; |
465 |
|
|
} |
466 |
|
|
|
467 |
|
|
// Clamp the components of the vector between |
468 |
|
|
// min and max values specified by the given vectors |
469 |
|
✗ |
RMAPI Vector2 Vector2Clamp(Vector2 v, Vector2 min, Vector2 max) |
470 |
|
|
{ |
471 |
|
|
Vector2 result = { 0 }; |
472 |
|
|
|
473 |
|
✗ |
result.x = fminf(max.x, fmaxf(min.x, v.x)); |
474 |
|
✗ |
result.y = fminf(max.y, fmaxf(min.y, v.y)); |
475 |
|
|
|
476 |
|
✗ |
return result; |
477 |
|
|
} |
478 |
|
|
|
479 |
|
|
// Clamp the magnitude of the vector between two min and max values |
480 |
|
✗ |
RMAPI Vector2 Vector2ClampValue(Vector2 v, float min, float max) |
481 |
|
|
{ |
482 |
|
|
Vector2 result = v; |
483 |
|
|
|
484 |
|
✗ |
float length = (v.x*v.x) + (v.y*v.y); |
485 |
|
✗ |
if (length > 0.0f) |
486 |
|
|
{ |
487 |
|
✗ |
length = sqrtf(length); |
488 |
|
|
|
489 |
|
✗ |
if (length < min) |
490 |
|
|
{ |
491 |
|
✗ |
float scale = min/length; |
492 |
|
✗ |
result.x = v.x*scale; |
493 |
|
✗ |
result.y = v.y*scale; |
494 |
|
|
} |
495 |
|
✗ |
else if (length > max) |
496 |
|
|
{ |
497 |
|
✗ |
float scale = max/length; |
498 |
|
✗ |
result.x = v.x*scale; |
499 |
|
✗ |
result.y = v.y*scale; |
500 |
|
|
} |
501 |
|
|
} |
502 |
|
|
|
503 |
|
✗ |
return result; |
504 |
|
|
} |
505 |
|
|
|
506 |
|
|
// Check whether two given vectors are almost equal |
507 |
|
✗ |
RMAPI int Vector2Equals(Vector2 p, Vector2 q) |
508 |
|
|
{ |
509 |
|
✗ |
int result = ((fabsf(p.x - q.x)) <= (EPSILON*fmaxf(1.0f, fmaxf(fabsf(p.x), fabsf(q.x))))) && |
510 |
|
✗ |
((fabsf(p.y - q.y)) <= (EPSILON*fmaxf(1.0f, fmaxf(fabsf(p.y), fabsf(q.y))))); |
511 |
|
|
|
512 |
|
✗ |
return result; |
513 |
|
|
} |
514 |
|
|
|
515 |
|
|
//---------------------------------------------------------------------------------- |
516 |
|
|
// Module Functions Definition - Vector3 math |
517 |
|
|
//---------------------------------------------------------------------------------- |
518 |
|
|
|
519 |
|
|
// Vector with components value 0.0f |
520 |
|
✗ |
RMAPI Vector3 Vector3Zero(void) |
521 |
|
|
{ |
522 |
|
|
Vector3 result = { 0.0f, 0.0f, 0.0f }; |
523 |
|
|
|
524 |
|
✗ |
return result; |
525 |
|
|
} |
526 |
|
|
|
527 |
|
|
// Vector with components value 1.0f |
528 |
|
✗ |
RMAPI Vector3 Vector3One(void) |
529 |
|
|
{ |
530 |
|
|
Vector3 result = { 1.0f, 1.0f, 1.0f }; |
531 |
|
|
|
532 |
|
✗ |
return result; |
533 |
|
|
} |
534 |
|
|
|
535 |
|
|
// Add two vectors |
536 |
|
✗ |
RMAPI Vector3 Vector3Add(Vector3 v1, Vector3 v2) |
537 |
|
|
{ |
538 |
|
✗ |
Vector3 result = { v1.x + v2.x, v1.y + v2.y, v1.z + v2.z }; |
539 |
|
|
|
540 |
|
✗ |
return result; |
541 |
|
|
} |
542 |
|
|
|
543 |
|
|
// Add vector and float value |
544 |
|
✗ |
RMAPI Vector3 Vector3AddValue(Vector3 v, float add) |
545 |
|
|
{ |
546 |
|
✗ |
Vector3 result = { v.x + add, v.y + add, v.z + add }; |
547 |
|
|
|
548 |
|
✗ |
return result; |
549 |
|
|
} |
550 |
|
|
|
551 |
|
|
// Subtract two vectors |
552 |
|
✗ |
RMAPI Vector3 Vector3Subtract(Vector3 v1, Vector3 v2) |
553 |
|
|
{ |
554 |
|
✗ |
Vector3 result = { v1.x - v2.x, v1.y - v2.y, v1.z - v2.z }; |
555 |
|
|
|
556 |
|
✗ |
return result; |
557 |
|
|
} |
558 |
|
|
|
559 |
|
|
// Subtract vector by float value |
560 |
|
✗ |
RMAPI Vector3 Vector3SubtractValue(Vector3 v, float sub) |
561 |
|
|
{ |
562 |
|
✗ |
Vector3 result = { v.x - sub, v.y - sub, v.z - sub }; |
563 |
|
|
|
564 |
|
✗ |
return result; |
565 |
|
|
} |
566 |
|
|
|
567 |
|
|
// Multiply vector by scalar |
568 |
|
✗ |
RMAPI Vector3 Vector3Scale(Vector3 v, float scalar) |
569 |
|
|
{ |
570 |
|
✗ |
Vector3 result = { v.x*scalar, v.y*scalar, v.z*scalar }; |
571 |
|
|
|
572 |
|
✗ |
return result; |
573 |
|
|
} |
574 |
|
|
|
575 |
|
|
// Multiply vector by vector |
576 |
|
✗ |
RMAPI Vector3 Vector3Multiply(Vector3 v1, Vector3 v2) |
577 |
|
|
{ |
578 |
|
✗ |
Vector3 result = { v1.x*v2.x, v1.y*v2.y, v1.z*v2.z }; |
579 |
|
|
|
580 |
|
✗ |
return result; |
581 |
|
|
} |
582 |
|
|
|
583 |
|
|
// Calculate two vectors cross product |
584 |
|
✗ |
RMAPI Vector3 Vector3CrossProduct(Vector3 v1, Vector3 v2) |
585 |
|
|
{ |
586 |
|
✗ |
Vector3 result = { v1.y*v2.z - v1.z*v2.y, v1.z*v2.x - v1.x*v2.z, v1.x*v2.y - v1.y*v2.x }; |
587 |
|
|
|
588 |
|
✗ |
return result; |
589 |
|
|
} |
590 |
|
|
|
591 |
|
|
// Calculate one vector perpendicular vector |
592 |
|
✗ |
RMAPI Vector3 Vector3Perpendicular(Vector3 v) |
593 |
|
|
{ |
594 |
|
|
Vector3 result = { 0 }; |
595 |
|
|
|
596 |
|
✗ |
float min = (float) fabs(v.x); |
597 |
|
|
Vector3 cardinalAxis = {1.0f, 0.0f, 0.0f}; |
598 |
|
|
|
599 |
|
✗ |
if (fabsf(v.y) < min) |
600 |
|
|
{ |
601 |
|
|
min = (float) fabs(v.y); |
602 |
|
|
Vector3 tmp = {0.0f, 1.0f, 0.0f}; |
603 |
|
|
cardinalAxis = tmp; |
604 |
|
|
} |
605 |
|
|
|
606 |
|
✗ |
if (fabsf(v.z) < min) |
607 |
|
|
{ |
608 |
|
|
Vector3 tmp = {0.0f, 0.0f, 1.0f}; |
609 |
|
|
cardinalAxis = tmp; |
610 |
|
|
} |
611 |
|
|
|
612 |
|
|
// Cross product between vectors |
613 |
|
✗ |
result.x = v.y*cardinalAxis.z - v.z*cardinalAxis.y; |
614 |
|
✗ |
result.y = v.z*cardinalAxis.x - v.x*cardinalAxis.z; |
615 |
|
✗ |
result.z = v.x*cardinalAxis.y - v.y*cardinalAxis.x; |
616 |
|
|
|
617 |
|
✗ |
return result; |
618 |
|
|
} |
619 |
|
|
|
620 |
|
|
// Calculate vector length |
621 |
|
✗ |
RMAPI float Vector3Length(const Vector3 v) |
622 |
|
|
{ |
623 |
|
✗ |
float result = sqrtf(v.x*v.x + v.y*v.y + v.z*v.z); |
624 |
|
|
|
625 |
|
✗ |
return result; |
626 |
|
|
} |
627 |
|
|
|
628 |
|
|
// Calculate vector square length |
629 |
|
✗ |
RMAPI float Vector3LengthSqr(const Vector3 v) |
630 |
|
|
{ |
631 |
|
✗ |
float result = v.x*v.x + v.y*v.y + v.z*v.z; |
632 |
|
|
|
633 |
|
✗ |
return result; |
634 |
|
|
} |
635 |
|
|
|
636 |
|
|
// Calculate two vectors dot product |
637 |
|
✗ |
RMAPI float Vector3DotProduct(Vector3 v1, Vector3 v2) |
638 |
|
|
{ |
639 |
|
✗ |
float result = (v1.x*v2.x + v1.y*v2.y + v1.z*v2.z); |
640 |
|
|
|
641 |
|
✗ |
return result; |
642 |
|
|
} |
643 |
|
|
|
644 |
|
|
// Calculate distance between two vectors |
645 |
|
✗ |
RMAPI float Vector3Distance(Vector3 v1, Vector3 v2) |
646 |
|
|
{ |
647 |
|
|
float result = 0.0f; |
648 |
|
|
|
649 |
|
✗ |
float dx = v2.x - v1.x; |
650 |
|
✗ |
float dy = v2.y - v1.y; |
651 |
|
✗ |
float dz = v2.z - v1.z; |
652 |
|
✗ |
result = sqrtf(dx*dx + dy*dy + dz*dz); |
653 |
|
|
|
654 |
|
✗ |
return result; |
655 |
|
|
} |
656 |
|
|
|
657 |
|
|
// Calculate square distance between two vectors |
658 |
|
✗ |
RMAPI float Vector3DistanceSqr(Vector3 v1, Vector3 v2) |
659 |
|
|
{ |
660 |
|
|
float result = 0.0f; |
661 |
|
|
|
662 |
|
✗ |
float dx = v2.x - v1.x; |
663 |
|
✗ |
float dy = v2.y - v1.y; |
664 |
|
✗ |
float dz = v2.z - v1.z; |
665 |
|
✗ |
result = dx*dx + dy*dy + dz*dz; |
666 |
|
|
|
667 |
|
✗ |
return result; |
668 |
|
|
} |
669 |
|
|
|
670 |
|
|
// Calculate angle between two vectors |
671 |
|
✗ |
RMAPI float Vector3Angle(Vector3 v1, Vector3 v2) |
672 |
|
|
{ |
673 |
|
|
float result = 0.0f; |
674 |
|
|
|
675 |
|
✗ |
Vector3 cross = { v1.y*v2.z - v1.z*v2.y, v1.z*v2.x - v1.x*v2.z, v1.x*v2.y - v1.y*v2.x }; |
676 |
|
✗ |
float len = sqrtf(cross.x*cross.x + cross.y*cross.y + cross.z*cross.z); |
677 |
|
✗ |
float dot = (v1.x*v2.x + v1.y*v2.y + v1.z*v2.z); |
678 |
|
✗ |
result = atan2f(len, dot); |
679 |
|
|
|
680 |
|
✗ |
return result; |
681 |
|
|
} |
682 |
|
|
|
683 |
|
|
// Negate provided vector (invert direction) |
684 |
|
✗ |
RMAPI Vector3 Vector3Negate(Vector3 v) |
685 |
|
|
{ |
686 |
|
✗ |
Vector3 result = { -v.x, -v.y, -v.z }; |
687 |
|
|
|
688 |
|
✗ |
return result; |
689 |
|
|
} |
690 |
|
|
|
691 |
|
|
// Divide vector by vector |
692 |
|
✗ |
RMAPI Vector3 Vector3Divide(Vector3 v1, Vector3 v2) |
693 |
|
|
{ |
694 |
|
✗ |
Vector3 result = { v1.x/v2.x, v1.y/v2.y, v1.z/v2.z }; |
695 |
|
|
|
696 |
|
✗ |
return result; |
697 |
|
|
} |
698 |
|
|
|
699 |
|
|
// Normalize provided vector |
700 |
|
✗ |
RMAPI Vector3 Vector3Normalize(Vector3 v) |
701 |
|
|
{ |
702 |
|
|
Vector3 result = v; |
703 |
|
|
|
704 |
|
✗ |
float length = sqrtf(v.x*v.x + v.y*v.y + v.z*v.z); |
705 |
|
✗ |
if (length != 0.0f) |
706 |
|
|
{ |
707 |
|
✗ |
float ilength = 1.0f/length; |
708 |
|
|
|
709 |
|
✗ |
result.x *= ilength; |
710 |
|
✗ |
result.y *= ilength; |
711 |
|
✗ |
result.z *= ilength; |
712 |
|
|
} |
713 |
|
|
|
714 |
|
✗ |
return result; |
715 |
|
|
} |
716 |
|
|
|
717 |
|
|
//Calculate the projection of the vector v1 on to v2 |
718 |
|
✗ |
RMAPI Vector3 Vector3Project(Vector3 v1, Vector3 v2) |
719 |
|
|
{ |
720 |
|
|
Vector3 result = { 0 }; |
721 |
|
|
|
722 |
|
✗ |
float v1dv2 = (v1.x*v2.x + v1.y*v2.y + v1.z*v2.z); |
723 |
|
✗ |
float v2dv2 = (v2.x*v2.x + v2.y*v2.y + v2.z*v2.z); |
724 |
|
|
|
725 |
|
✗ |
float mag = v1dv2/v2dv2; |
726 |
|
|
|
727 |
|
✗ |
result.x = v2.x*mag; |
728 |
|
✗ |
result.y = v2.y*mag; |
729 |
|
✗ |
result.z = v2.z*mag; |
730 |
|
|
|
731 |
|
✗ |
return result; |
732 |
|
|
} |
733 |
|
|
|
734 |
|
|
//Calculate the rejection of the vector v1 on to v2 |
735 |
|
✗ |
RMAPI Vector3 Vector3Reject(Vector3 v1, Vector3 v2) |
736 |
|
|
{ |
737 |
|
|
Vector3 result = { 0 }; |
738 |
|
|
|
739 |
|
✗ |
float v1dv2 = (v1.x*v2.x + v1.y*v2.y + v1.z*v2.z); |
740 |
|
✗ |
float v2dv2 = (v2.x*v2.x + v2.y*v2.y + v2.z*v2.z); |
741 |
|
|
|
742 |
|
✗ |
float mag = v1dv2/v2dv2; |
743 |
|
|
|
744 |
|
✗ |
result.x = v1.x - (v2.x*mag); |
745 |
|
✗ |
result.y = v1.y - (v2.y*mag); |
746 |
|
✗ |
result.z = v1.z - (v2.z*mag); |
747 |
|
|
|
748 |
|
✗ |
return result; |
749 |
|
|
} |
750 |
|
|
|
751 |
|
|
// Orthonormalize provided vectors |
752 |
|
|
// Makes vectors normalized and orthogonal to each other |
753 |
|
|
// Gram-Schmidt function implementation |
754 |
|
✗ |
RMAPI void Vector3OrthoNormalize(Vector3 *v1, Vector3 *v2) |
755 |
|
|
{ |
756 |
|
|
float length = 0.0f; |
757 |
|
|
float ilength = 0.0f; |
758 |
|
|
|
759 |
|
|
// Vector3Normalize(*v1); |
760 |
|
✗ |
Vector3 v = *v1; |
761 |
|
✗ |
length = sqrtf(v.x*v.x + v.y*v.y + v.z*v.z); |
762 |
|
✗ |
if (length == 0.0f) length = 1.0f; |
763 |
|
✗ |
ilength = 1.0f/length; |
764 |
|
✗ |
v1->x *= ilength; |
765 |
|
✗ |
v1->y *= ilength; |
766 |
|
✗ |
v1->z *= ilength; |
767 |
|
|
|
768 |
|
|
// Vector3CrossProduct(*v1, *v2) |
769 |
|
✗ |
Vector3 vn1 = { v1->y*v2->z - v1->z*v2->y, v1->z*v2->x - v1->x*v2->z, v1->x*v2->y - v1->y*v2->x }; |
770 |
|
|
|
771 |
|
|
// Vector3Normalize(vn1); |
772 |
|
|
v = vn1; |
773 |
|
✗ |
length = sqrtf(v.x*v.x + v.y*v.y + v.z*v.z); |
774 |
|
✗ |
if (length == 0.0f) length = 1.0f; |
775 |
|
✗ |
ilength = 1.0f/length; |
776 |
|
✗ |
vn1.x *= ilength; |
777 |
|
✗ |
vn1.y *= ilength; |
778 |
|
✗ |
vn1.z *= ilength; |
779 |
|
|
|
780 |
|
|
// Vector3CrossProduct(vn1, *v1) |
781 |
|
✗ |
Vector3 vn2 = { vn1.y*v1->z - vn1.z*v1->y, vn1.z*v1->x - vn1.x*v1->z, vn1.x*v1->y - vn1.y*v1->x }; |
782 |
|
|
|
783 |
|
✗ |
*v2 = vn2; |
784 |
|
|
} |
785 |
|
|
|
786 |
|
|
// Transforms a Vector3 by a given Matrix |
787 |
|
✗ |
RMAPI Vector3 Vector3Transform(Vector3 v, Matrix mat) |
788 |
|
|
{ |
789 |
|
|
Vector3 result = { 0 }; |
790 |
|
|
|
791 |
|
✗ |
float x = v.x; |
792 |
|
✗ |
float y = v.y; |
793 |
|
✗ |
float z = v.z; |
794 |
|
|
|
795 |
|
✗ |
result.x = mat.m0*x + mat.m4*y + mat.m8*z + mat.m12; |
796 |
|
✗ |
result.y = mat.m1*x + mat.m5*y + mat.m9*z + mat.m13; |
797 |
|
✗ |
result.z = mat.m2*x + mat.m6*y + mat.m10*z + mat.m14; |
798 |
|
|
|
799 |
|
✗ |
return result; |
800 |
|
|
} |
801 |
|
|
|
802 |
|
|
// Transform a vector by quaternion rotation |
803 |
|
✗ |
RMAPI Vector3 Vector3RotateByQuaternion(Vector3 v, Quaternion q) |
804 |
|
|
{ |
805 |
|
|
Vector3 result = { 0 }; |
806 |
|
|
|
807 |
|
✗ |
result.x = v.x*(q.x*q.x + q.w*q.w - q.y*q.y - q.z*q.z) + v.y*(2*q.x*q.y - 2*q.w*q.z) + v.z*(2*q.x*q.z + 2*q.w*q.y); |
808 |
|
✗ |
result.y = v.x*(2*q.w*q.z + 2*q.x*q.y) + v.y*(q.w*q.w - q.x*q.x + q.y*q.y - q.z*q.z) + v.z*(-2*q.w*q.x + 2*q.y*q.z); |
809 |
|
✗ |
result.z = v.x*(-2*q.w*q.y + 2*q.x*q.z) + v.y*(2*q.w*q.x + 2*q.y*q.z)+ v.z*(q.w*q.w - q.x*q.x - q.y*q.y + q.z*q.z); |
810 |
|
|
|
811 |
|
✗ |
return result; |
812 |
|
|
} |
813 |
|
|
|
814 |
|
|
// Rotates a vector around an axis |
815 |
|
✗ |
RMAPI Vector3 Vector3RotateByAxisAngle(Vector3 v, Vector3 axis, float angle) |
816 |
|
|
{ |
817 |
|
|
// Using Euler-Rodrigues Formula |
818 |
|
|
// Ref.: https://en.wikipedia.org/w/index.php?title=Euler%E2%80%93Rodrigues_formula |
819 |
|
|
|
820 |
|
|
Vector3 result = v; |
821 |
|
|
|
822 |
|
|
// Vector3Normalize(axis); |
823 |
|
✗ |
float length = sqrtf(axis.x * axis.x + axis.y * axis.y + axis.z * axis.z); |
824 |
|
✗ |
if (length == 0.0f) length = 1.0f; |
825 |
|
✗ |
float ilength = 1.0f / length; |
826 |
|
✗ |
axis.x *= ilength; |
827 |
|
✗ |
axis.y *= ilength; |
828 |
|
✗ |
axis.z *= ilength; |
829 |
|
|
|
830 |
|
✗ |
angle /= 2.0f; |
831 |
|
✗ |
float a = sinf(angle); |
832 |
|
✗ |
float b = axis.x * a; |
833 |
|
✗ |
float c = axis.y * a; |
834 |
|
✗ |
float d = axis.z * a; |
835 |
|
✗ |
a = cosf(angle); |
836 |
|
|
Vector3 w = { b, c, d }; |
837 |
|
|
|
838 |
|
|
// Vector3CrossProduct(w, v) |
839 |
|
✗ |
Vector3 wv = { w.y * v.z - w.z * v.y, w.z * v.x - w.x * v.z, w.x * v.y - w.y * v.x }; |
840 |
|
|
|
841 |
|
|
// Vector3CrossProduct(w, wv) |
842 |
|
✗ |
Vector3 wwv = { w.y * wv.z - w.z * wv.y, w.z * wv.x - w.x * wv.z, w.x * wv.y - w.y * wv.x }; |
843 |
|
|
|
844 |
|
|
// Vector3Scale(wv, 2 * a) |
845 |
|
✗ |
a *= 2; |
846 |
|
✗ |
wv.x *= a; |
847 |
|
✗ |
wv.y *= a; |
848 |
|
✗ |
wv.z *= a; |
849 |
|
|
|
850 |
|
|
// Vector3Scale(wwv, 2) |
851 |
|
✗ |
wwv.x *= 2; |
852 |
|
✗ |
wwv.y *= 2; |
853 |
|
✗ |
wwv.z *= 2; |
854 |
|
|
|
855 |
|
✗ |
result.x += wv.x; |
856 |
|
✗ |
result.y += wv.y; |
857 |
|
✗ |
result.z += wv.z; |
858 |
|
|
|
859 |
|
✗ |
result.x += wwv.x; |
860 |
|
✗ |
result.y += wwv.y; |
861 |
|
✗ |
result.z += wwv.z; |
862 |
|
|
|
863 |
|
✗ |
return result; |
864 |
|
|
} |
865 |
|
|
|
866 |
|
|
// Calculate linear interpolation between two vectors |
867 |
|
✗ |
RMAPI Vector3 Vector3Lerp(Vector3 v1, Vector3 v2, float amount) |
868 |
|
|
{ |
869 |
|
|
Vector3 result = { 0 }; |
870 |
|
|
|
871 |
|
✗ |
result.x = v1.x + amount*(v2.x - v1.x); |
872 |
|
✗ |
result.y = v1.y + amount*(v2.y - v1.y); |
873 |
|
✗ |
result.z = v1.z + amount*(v2.z - v1.z); |
874 |
|
|
|
875 |
|
✗ |
return result; |
876 |
|
|
} |
877 |
|
|
|
878 |
|
|
// Calculate reflected vector to normal |
879 |
|
✗ |
RMAPI Vector3 Vector3Reflect(Vector3 v, Vector3 normal) |
880 |
|
|
{ |
881 |
|
|
Vector3 result = { 0 }; |
882 |
|
|
|
883 |
|
|
// I is the original vector |
884 |
|
|
// N is the normal of the incident plane |
885 |
|
|
// R = I - (2*N*(DotProduct[I, N])) |
886 |
|
|
|
887 |
|
✗ |
float dotProduct = (v.x*normal.x + v.y*normal.y + v.z*normal.z); |
888 |
|
|
|
889 |
|
✗ |
result.x = v.x - (2.0f*normal.x)*dotProduct; |
890 |
|
✗ |
result.y = v.y - (2.0f*normal.y)*dotProduct; |
891 |
|
✗ |
result.z = v.z - (2.0f*normal.z)*dotProduct; |
892 |
|
|
|
893 |
|
✗ |
return result; |
894 |
|
|
} |
895 |
|
|
|
896 |
|
|
// Get min value for each pair of components |
897 |
|
✗ |
RMAPI Vector3 Vector3Min(Vector3 v1, Vector3 v2) |
898 |
|
|
{ |
899 |
|
|
Vector3 result = { 0 }; |
900 |
|
|
|
901 |
|
✗ |
result.x = fminf(v1.x, v2.x); |
902 |
|
✗ |
result.y = fminf(v1.y, v2.y); |
903 |
|
✗ |
result.z = fminf(v1.z, v2.z); |
904 |
|
|
|
905 |
|
✗ |
return result; |
906 |
|
|
} |
907 |
|
|
|
908 |
|
|
// Get max value for each pair of components |
909 |
|
✗ |
RMAPI Vector3 Vector3Max(Vector3 v1, Vector3 v2) |
910 |
|
|
{ |
911 |
|
|
Vector3 result = { 0 }; |
912 |
|
|
|
913 |
|
✗ |
result.x = fmaxf(v1.x, v2.x); |
914 |
|
✗ |
result.y = fmaxf(v1.y, v2.y); |
915 |
|
✗ |
result.z = fmaxf(v1.z, v2.z); |
916 |
|
|
|
917 |
|
✗ |
return result; |
918 |
|
|
} |
919 |
|
|
|
920 |
|
|
// Compute barycenter coordinates (u, v, w) for point p with respect to triangle (a, b, c) |
921 |
|
|
// NOTE: Assumes P is on the plane of the triangle |
922 |
|
✗ |
RMAPI Vector3 Vector3Barycenter(Vector3 p, Vector3 a, Vector3 b, Vector3 c) |
923 |
|
|
{ |
924 |
|
|
Vector3 result = { 0 }; |
925 |
|
|
|
926 |
|
✗ |
Vector3 v0 = { b.x - a.x, b.y - a.y, b.z - a.z }; // Vector3Subtract(b, a) |
927 |
|
✗ |
Vector3 v1 = { c.x - a.x, c.y - a.y, c.z - a.z }; // Vector3Subtract(c, a) |
928 |
|
✗ |
Vector3 v2 = { p.x - a.x, p.y - a.y, p.z - a.z }; // Vector3Subtract(p, a) |
929 |
|
✗ |
float d00 = (v0.x*v0.x + v0.y*v0.y + v0.z*v0.z); // Vector3DotProduct(v0, v0) |
930 |
|
✗ |
float d01 = (v0.x*v1.x + v0.y*v1.y + v0.z*v1.z); // Vector3DotProduct(v0, v1) |
931 |
|
✗ |
float d11 = (v1.x*v1.x + v1.y*v1.y + v1.z*v1.z); // Vector3DotProduct(v1, v1) |
932 |
|
✗ |
float d20 = (v2.x*v0.x + v2.y*v0.y + v2.z*v0.z); // Vector3DotProduct(v2, v0) |
933 |
|
✗ |
float d21 = (v2.x*v1.x + v2.y*v1.y + v2.z*v1.z); // Vector3DotProduct(v2, v1) |
934 |
|
|
|
935 |
|
✗ |
float denom = d00*d11 - d01*d01; |
936 |
|
|
|
937 |
|
✗ |
result.y = (d11*d20 - d01*d21)/denom; |
938 |
|
✗ |
result.z = (d00*d21 - d01*d20)/denom; |
939 |
|
✗ |
result.x = 1.0f - (result.z + result.y); |
940 |
|
|
|
941 |
|
✗ |
return result; |
942 |
|
|
} |
943 |
|
|
|
944 |
|
|
// Projects a Vector3 from screen space into object space |
945 |
|
|
// NOTE: We are avoiding calling other raymath functions despite available |
946 |
|
✗ |
RMAPI Vector3 Vector3Unproject(Vector3 source, Matrix projection, Matrix view) |
947 |
|
|
{ |
948 |
|
|
Vector3 result = { 0 }; |
949 |
|
|
|
950 |
|
|
// Calculate unprojected matrix (multiply view matrix by projection matrix) and invert it |
951 |
|
|
Matrix matViewProj = { // MatrixMultiply(view, projection); |
952 |
|
✗ |
view.m0*projection.m0 + view.m1*projection.m4 + view.m2*projection.m8 + view.m3*projection.m12, |
953 |
|
✗ |
view.m0*projection.m1 + view.m1*projection.m5 + view.m2*projection.m9 + view.m3*projection.m13, |
954 |
|
✗ |
view.m0*projection.m2 + view.m1*projection.m6 + view.m2*projection.m10 + view.m3*projection.m14, |
955 |
|
✗ |
view.m0*projection.m3 + view.m1*projection.m7 + view.m2*projection.m11 + view.m3*projection.m15, |
956 |
|
✗ |
view.m4*projection.m0 + view.m5*projection.m4 + view.m6*projection.m8 + view.m7*projection.m12, |
957 |
|
✗ |
view.m4*projection.m1 + view.m5*projection.m5 + view.m6*projection.m9 + view.m7*projection.m13, |
958 |
|
✗ |
view.m4*projection.m2 + view.m5*projection.m6 + view.m6*projection.m10 + view.m7*projection.m14, |
959 |
|
✗ |
view.m4*projection.m3 + view.m5*projection.m7 + view.m6*projection.m11 + view.m7*projection.m15, |
960 |
|
✗ |
view.m8*projection.m0 + view.m9*projection.m4 + view.m10*projection.m8 + view.m11*projection.m12, |
961 |
|
✗ |
view.m8*projection.m1 + view.m9*projection.m5 + view.m10*projection.m9 + view.m11*projection.m13, |
962 |
|
✗ |
view.m8*projection.m2 + view.m9*projection.m6 + view.m10*projection.m10 + view.m11*projection.m14, |
963 |
|
✗ |
view.m8*projection.m3 + view.m9*projection.m7 + view.m10*projection.m11 + view.m11*projection.m15, |
964 |
|
✗ |
view.m12*projection.m0 + view.m13*projection.m4 + view.m14*projection.m8 + view.m15*projection.m12, |
965 |
|
✗ |
view.m12*projection.m1 + view.m13*projection.m5 + view.m14*projection.m9 + view.m15*projection.m13, |
966 |
|
✗ |
view.m12*projection.m2 + view.m13*projection.m6 + view.m14*projection.m10 + view.m15*projection.m14, |
967 |
|
✗ |
view.m12*projection.m3 + view.m13*projection.m7 + view.m14*projection.m11 + view.m15*projection.m15 }; |
968 |
|
|
|
969 |
|
|
// Calculate inverted matrix -> MatrixInvert(matViewProj); |
970 |
|
|
// Cache the matrix values (speed optimization) |
971 |
|
|
float a00 = matViewProj.m0, a01 = matViewProj.m1, a02 = matViewProj.m2, a03 = matViewProj.m3; |
972 |
|
|
float a10 = matViewProj.m4, a11 = matViewProj.m5, a12 = matViewProj.m6, a13 = matViewProj.m7; |
973 |
|
|
float a20 = matViewProj.m8, a21 = matViewProj.m9, a22 = matViewProj.m10, a23 = matViewProj.m11; |
974 |
|
|
float a30 = matViewProj.m12, a31 = matViewProj.m13, a32 = matViewProj.m14, a33 = matViewProj.m15; |
975 |
|
|
|
976 |
|
✗ |
float b00 = a00*a11 - a01*a10; |
977 |
|
✗ |
float b01 = a00*a12 - a02*a10; |
978 |
|
✗ |
float b02 = a00*a13 - a03*a10; |
979 |
|
✗ |
float b03 = a01*a12 - a02*a11; |
980 |
|
✗ |
float b04 = a01*a13 - a03*a11; |
981 |
|
✗ |
float b05 = a02*a13 - a03*a12; |
982 |
|
✗ |
float b06 = a20*a31 - a21*a30; |
983 |
|
✗ |
float b07 = a20*a32 - a22*a30; |
984 |
|
✗ |
float b08 = a20*a33 - a23*a30; |
985 |
|
✗ |
float b09 = a21*a32 - a22*a31; |
986 |
|
✗ |
float b10 = a21*a33 - a23*a31; |
987 |
|
✗ |
float b11 = a22*a33 - a23*a32; |
988 |
|
|
|
989 |
|
|
// Calculate the invert determinant (inlined to avoid double-caching) |
990 |
|
✗ |
float invDet = 1.0f/(b00*b11 - b01*b10 + b02*b09 + b03*b08 - b04*b07 + b05*b06); |
991 |
|
|
|
992 |
|
|
Matrix matViewProjInv = { |
993 |
|
✗ |
(a11*b11 - a12*b10 + a13*b09)*invDet, |
994 |
|
✗ |
(-a01*b11 + a02*b10 - a03*b09)*invDet, |
995 |
|
✗ |
(a31*b05 - a32*b04 + a33*b03)*invDet, |
996 |
|
✗ |
(-a21*b05 + a22*b04 - a23*b03)*invDet, |
997 |
|
✗ |
(-a10*b11 + a12*b08 - a13*b07)*invDet, |
998 |
|
✗ |
(a00*b11 - a02*b08 + a03*b07)*invDet, |
999 |
|
✗ |
(-a30*b05 + a32*b02 - a33*b01)*invDet, |
1000 |
|
✗ |
(a20*b05 - a22*b02 + a23*b01)*invDet, |
1001 |
|
✗ |
(a10*b10 - a11*b08 + a13*b06)*invDet, |
1002 |
|
✗ |
(-a00*b10 + a01*b08 - a03*b06)*invDet, |
1003 |
|
✗ |
(a30*b04 - a31*b02 + a33*b00)*invDet, |
1004 |
|
✗ |
(-a20*b04 + a21*b02 - a23*b00)*invDet, |
1005 |
|
✗ |
(-a10*b09 + a11*b07 - a12*b06)*invDet, |
1006 |
|
✗ |
(a00*b09 - a01*b07 + a02*b06)*invDet, |
1007 |
|
✗ |
(-a30*b03 + a31*b01 - a32*b00)*invDet, |
1008 |
|
✗ |
(a20*b03 - a21*b01 + a22*b00)*invDet }; |
1009 |
|
|
|
1010 |
|
|
// Create quaternion from source point |
1011 |
|
✗ |
Quaternion quat = { source.x, source.y, source.z, 1.0f }; |
1012 |
|
|
|
1013 |
|
|
// Multiply quat point by unprojecte matrix |
1014 |
|
|
Quaternion qtransformed = { // QuaternionTransform(quat, matViewProjInv) |
1015 |
|
✗ |
matViewProjInv.m0*quat.x + matViewProjInv.m4*quat.y + matViewProjInv.m8*quat.z + matViewProjInv.m12*quat.w, |
1016 |
|
✗ |
matViewProjInv.m1*quat.x + matViewProjInv.m5*quat.y + matViewProjInv.m9*quat.z + matViewProjInv.m13*quat.w, |
1017 |
|
✗ |
matViewProjInv.m2*quat.x + matViewProjInv.m6*quat.y + matViewProjInv.m10*quat.z + matViewProjInv.m14*quat.w, |
1018 |
|
✗ |
matViewProjInv.m3*quat.x + matViewProjInv.m7*quat.y + matViewProjInv.m11*quat.z + matViewProjInv.m15*quat.w }; |
1019 |
|
|
|
1020 |
|
|
// Normalized world points in vectors |
1021 |
|
✗ |
result.x = qtransformed.x/qtransformed.w; |
1022 |
|
✗ |
result.y = qtransformed.y/qtransformed.w; |
1023 |
|
✗ |
result.z = qtransformed.z/qtransformed.w; |
1024 |
|
|
|
1025 |
|
✗ |
return result; |
1026 |
|
|
} |
1027 |
|
|
|
1028 |
|
|
// Get Vector3 as float array |
1029 |
|
✗ |
RMAPI float3 Vector3ToFloatV(Vector3 v) |
1030 |
|
|
{ |
1031 |
|
|
float3 buffer = { 0 }; |
1032 |
|
|
|
1033 |
|
✗ |
buffer.v[0] = v.x; |
1034 |
|
✗ |
buffer.v[1] = v.y; |
1035 |
|
✗ |
buffer.v[2] = v.z; |
1036 |
|
|
|
1037 |
|
✗ |
return buffer; |
1038 |
|
|
} |
1039 |
|
|
|
1040 |
|
|
// Invert the given vector |
1041 |
|
✗ |
RMAPI Vector3 Vector3Invert(Vector3 v) |
1042 |
|
|
{ |
1043 |
|
✗ |
Vector3 result = { 1.0f/v.x, 1.0f/v.y, 1.0f/v.z }; |
1044 |
|
|
|
1045 |
|
✗ |
return result; |
1046 |
|
|
} |
1047 |
|
|
|
1048 |
|
|
// Clamp the components of the vector between |
1049 |
|
|
// min and max values specified by the given vectors |
1050 |
|
✗ |
RMAPI Vector3 Vector3Clamp(Vector3 v, Vector3 min, Vector3 max) |
1051 |
|
|
{ |
1052 |
|
|
Vector3 result = { 0 }; |
1053 |
|
|
|
1054 |
|
✗ |
result.x = fminf(max.x, fmaxf(min.x, v.x)); |
1055 |
|
✗ |
result.y = fminf(max.y, fmaxf(min.y, v.y)); |
1056 |
|
✗ |
result.z = fminf(max.z, fmaxf(min.z, v.z)); |
1057 |
|
|
|
1058 |
|
✗ |
return result; |
1059 |
|
|
} |
1060 |
|
|
|
1061 |
|
|
// Clamp the magnitude of the vector between two values |
1062 |
|
✗ |
RMAPI Vector3 Vector3ClampValue(Vector3 v, float min, float max) |
1063 |
|
|
{ |
1064 |
|
|
Vector3 result = v; |
1065 |
|
|
|
1066 |
|
✗ |
float length = (v.x*v.x) + (v.y*v.y) + (v.z*v.z); |
1067 |
|
✗ |
if (length > 0.0f) |
1068 |
|
|
{ |
1069 |
|
✗ |
length = sqrtf(length); |
1070 |
|
|
|
1071 |
|
✗ |
if (length < min) |
1072 |
|
|
{ |
1073 |
|
✗ |
float scale = min/length; |
1074 |
|
✗ |
result.x = v.x*scale; |
1075 |
|
✗ |
result.y = v.y*scale; |
1076 |
|
✗ |
result.z = v.z*scale; |
1077 |
|
|
} |
1078 |
|
✗ |
else if (length > max) |
1079 |
|
|
{ |
1080 |
|
✗ |
float scale = max/length; |
1081 |
|
✗ |
result.x = v.x*scale; |
1082 |
|
✗ |
result.y = v.y*scale; |
1083 |
|
✗ |
result.z = v.z*scale; |
1084 |
|
|
} |
1085 |
|
|
} |
1086 |
|
|
|
1087 |
|
✗ |
return result; |
1088 |
|
|
} |
1089 |
|
|
|
1090 |
|
|
// Check whether two given vectors are almost equal |
1091 |
|
✗ |
RMAPI int Vector3Equals(Vector3 p, Vector3 q) |
1092 |
|
|
{ |
1093 |
|
✗ |
int result = ((fabsf(p.x - q.x)) <= (EPSILON*fmaxf(1.0f, fmaxf(fabsf(p.x), fabsf(q.x))))) && |
1094 |
|
✗ |
((fabsf(p.y - q.y)) <= (EPSILON*fmaxf(1.0f, fmaxf(fabsf(p.y), fabsf(q.y))))) && |
1095 |
|
✗ |
((fabsf(p.z - q.z)) <= (EPSILON*fmaxf(1.0f, fmaxf(fabsf(p.z), fabsf(q.z))))); |
1096 |
|
|
|
1097 |
|
✗ |
return result; |
1098 |
|
|
} |
1099 |
|
|
|
1100 |
|
|
// Compute the direction of a refracted ray where v specifies the |
1101 |
|
|
// normalized direction of the incoming ray, n specifies the |
1102 |
|
|
// normalized normal vector of the interface of two optical media, |
1103 |
|
|
// and r specifies the ratio of the refractive index of the medium |
1104 |
|
|
// from where the ray comes to the refractive index of the medium |
1105 |
|
|
// on the other side of the surface |
1106 |
|
✗ |
RMAPI Vector3 Vector3Refract(Vector3 v, Vector3 n, float r) |
1107 |
|
|
{ |
1108 |
|
|
Vector3 result = { 0 }; |
1109 |
|
|
|
1110 |
|
✗ |
float dot = v.x*n.x + v.y*n.y + v.z*n.z; |
1111 |
|
✗ |
float d = 1.0f - r*r*(1.0f - dot*dot); |
1112 |
|
|
|
1113 |
|
✗ |
if (d >= 0.0f) |
1114 |
|
|
{ |
1115 |
|
✗ |
d = sqrtf(d); |
1116 |
|
✗ |
v.x = r*v.x - (r*dot + d)*n.x; |
1117 |
|
✗ |
v.y = r*v.y - (r*dot + d)*n.y; |
1118 |
|
✗ |
v.z = r*v.z - (r*dot + d)*n.z; |
1119 |
|
|
|
1120 |
|
|
result = v; |
1121 |
|
|
} |
1122 |
|
|
|
1123 |
|
✗ |
return result; |
1124 |
|
|
} |
1125 |
|
|
|
1126 |
|
|
//---------------------------------------------------------------------------------- |
1127 |
|
|
// Module Functions Definition - Matrix math |
1128 |
|
|
//---------------------------------------------------------------------------------- |
1129 |
|
|
|
1130 |
|
|
// Compute matrix determinant |
1131 |
|
✗ |
RMAPI float MatrixDeterminant(Matrix mat) |
1132 |
|
|
{ |
1133 |
|
|
float result = 0.0f; |
1134 |
|
|
|
1135 |
|
|
// Cache the matrix values (speed optimization) |
1136 |
|
✗ |
float a00 = mat.m0, a01 = mat.m1, a02 = mat.m2, a03 = mat.m3; |
1137 |
|
✗ |
float a10 = mat.m4, a11 = mat.m5, a12 = mat.m6, a13 = mat.m7; |
1138 |
|
✗ |
float a20 = mat.m8, a21 = mat.m9, a22 = mat.m10, a23 = mat.m11; |
1139 |
|
✗ |
float a30 = mat.m12, a31 = mat.m13, a32 = mat.m14, a33 = mat.m15; |
1140 |
|
|
|
1141 |
|
✗ |
result = a30*a21*a12*a03 - a20*a31*a12*a03 - a30*a11*a22*a03 + a10*a31*a22*a03 + |
1142 |
|
✗ |
a20*a11*a32*a03 - a10*a21*a32*a03 - a30*a21*a02*a13 + a20*a31*a02*a13 + |
1143 |
|
✗ |
a30*a01*a22*a13 - a00*a31*a22*a13 - a20*a01*a32*a13 + a00*a21*a32*a13 + |
1144 |
|
✗ |
a30*a11*a02*a23 - a10*a31*a02*a23 - a30*a01*a12*a23 + a00*a31*a12*a23 + |
1145 |
|
✗ |
a10*a01*a32*a23 - a00*a11*a32*a23 - a20*a11*a02*a33 + a10*a21*a02*a33 + |
1146 |
|
✗ |
a20*a01*a12*a33 - a00*a21*a12*a33 - a10*a01*a22*a33 + a00*a11*a22*a33; |
1147 |
|
|
|
1148 |
|
✗ |
return result; |
1149 |
|
|
} |
1150 |
|
|
|
1151 |
|
|
// Get the trace of the matrix (sum of the values along the diagonal) |
1152 |
|
✗ |
RMAPI float MatrixTrace(Matrix mat) |
1153 |
|
|
{ |
1154 |
|
✗ |
float result = (mat.m0 + mat.m5 + mat.m10 + mat.m15); |
1155 |
|
|
|
1156 |
|
✗ |
return result; |
1157 |
|
|
} |
1158 |
|
|
|
1159 |
|
|
// Transposes provided matrix |
1160 |
|
✗ |
RMAPI Matrix MatrixTranspose(Matrix mat) |
1161 |
|
|
{ |
1162 |
|
|
Matrix result = { 0 }; |
1163 |
|
|
|
1164 |
|
✗ |
result.m0 = mat.m0; |
1165 |
|
✗ |
result.m1 = mat.m4; |
1166 |
|
✗ |
result.m2 = mat.m8; |
1167 |
|
✗ |
result.m3 = mat.m12; |
1168 |
|
✗ |
result.m4 = mat.m1; |
1169 |
|
✗ |
result.m5 = mat.m5; |
1170 |
|
✗ |
result.m6 = mat.m9; |
1171 |
|
✗ |
result.m7 = mat.m13; |
1172 |
|
✗ |
result.m8 = mat.m2; |
1173 |
|
✗ |
result.m9 = mat.m6; |
1174 |
|
✗ |
result.m10 = mat.m10; |
1175 |
|
✗ |
result.m11 = mat.m14; |
1176 |
|
✗ |
result.m12 = mat.m3; |
1177 |
|
✗ |
result.m13 = mat.m7; |
1178 |
|
✗ |
result.m14 = mat.m11; |
1179 |
|
✗ |
result.m15 = mat.m15; |
1180 |
|
|
|
1181 |
|
✗ |
return result; |
1182 |
|
|
} |
1183 |
|
|
|
1184 |
|
|
// Invert provided matrix |
1185 |
|
✗ |
RMAPI Matrix MatrixInvert(Matrix mat) |
1186 |
|
|
{ |
1187 |
|
|
Matrix result = { 0 }; |
1188 |
|
|
|
1189 |
|
|
// Cache the matrix values (speed optimization) |
1190 |
|
✗ |
float a00 = mat.m0, a01 = mat.m1, a02 = mat.m2, a03 = mat.m3; |
1191 |
|
✗ |
float a10 = mat.m4, a11 = mat.m5, a12 = mat.m6, a13 = mat.m7; |
1192 |
|
✗ |
float a20 = mat.m8, a21 = mat.m9, a22 = mat.m10, a23 = mat.m11; |
1193 |
|
✗ |
float a30 = mat.m12, a31 = mat.m13, a32 = mat.m14, a33 = mat.m15; |
1194 |
|
|
|
1195 |
|
✗ |
float b00 = a00*a11 - a01*a10; |
1196 |
|
✗ |
float b01 = a00*a12 - a02*a10; |
1197 |
|
✗ |
float b02 = a00*a13 - a03*a10; |
1198 |
|
✗ |
float b03 = a01*a12 - a02*a11; |
1199 |
|
✗ |
float b04 = a01*a13 - a03*a11; |
1200 |
|
✗ |
float b05 = a02*a13 - a03*a12; |
1201 |
|
✗ |
float b06 = a20*a31 - a21*a30; |
1202 |
|
✗ |
float b07 = a20*a32 - a22*a30; |
1203 |
|
✗ |
float b08 = a20*a33 - a23*a30; |
1204 |
|
✗ |
float b09 = a21*a32 - a22*a31; |
1205 |
|
✗ |
float b10 = a21*a33 - a23*a31; |
1206 |
|
✗ |
float b11 = a22*a33 - a23*a32; |
1207 |
|
|
|
1208 |
|
|
// Calculate the invert determinant (inlined to avoid double-caching) |
1209 |
|
✗ |
float invDet = 1.0f/(b00*b11 - b01*b10 + b02*b09 + b03*b08 - b04*b07 + b05*b06); |
1210 |
|
|
|
1211 |
|
✗ |
result.m0 = (a11*b11 - a12*b10 + a13*b09)*invDet; |
1212 |
|
✗ |
result.m1 = (-a01*b11 + a02*b10 - a03*b09)*invDet; |
1213 |
|
✗ |
result.m2 = (a31*b05 - a32*b04 + a33*b03)*invDet; |
1214 |
|
✗ |
result.m3 = (-a21*b05 + a22*b04 - a23*b03)*invDet; |
1215 |
|
✗ |
result.m4 = (-a10*b11 + a12*b08 - a13*b07)*invDet; |
1216 |
|
✗ |
result.m5 = (a00*b11 - a02*b08 + a03*b07)*invDet; |
1217 |
|
✗ |
result.m6 = (-a30*b05 + a32*b02 - a33*b01)*invDet; |
1218 |
|
✗ |
result.m7 = (a20*b05 - a22*b02 + a23*b01)*invDet; |
1219 |
|
✗ |
result.m8 = (a10*b10 - a11*b08 + a13*b06)*invDet; |
1220 |
|
✗ |
result.m9 = (-a00*b10 + a01*b08 - a03*b06)*invDet; |
1221 |
|
✗ |
result.m10 = (a30*b04 - a31*b02 + a33*b00)*invDet; |
1222 |
|
✗ |
result.m11 = (-a20*b04 + a21*b02 - a23*b00)*invDet; |
1223 |
|
✗ |
result.m12 = (-a10*b09 + a11*b07 - a12*b06)*invDet; |
1224 |
|
✗ |
result.m13 = (a00*b09 - a01*b07 + a02*b06)*invDet; |
1225 |
|
✗ |
result.m14 = (-a30*b03 + a31*b01 - a32*b00)*invDet; |
1226 |
|
✗ |
result.m15 = (a20*b03 - a21*b01 + a22*b00)*invDet; |
1227 |
|
|
|
1228 |
|
✗ |
return result; |
1229 |
|
|
} |
1230 |
|
|
|
1231 |
|
|
// Get identity matrix |
1232 |
|
✗ |
RMAPI Matrix MatrixIdentity(void) |
1233 |
|
|
{ |
1234 |
|
|
Matrix result = { 1.0f, 0.0f, 0.0f, 0.0f, |
1235 |
|
|
0.0f, 1.0f, 0.0f, 0.0f, |
1236 |
|
|
0.0f, 0.0f, 1.0f, 0.0f, |
1237 |
|
|
0.0f, 0.0f, 0.0f, 1.0f }; |
1238 |
|
|
|
1239 |
|
✗ |
return result; |
1240 |
|
|
} |
1241 |
|
|
|
1242 |
|
|
// Add two matrices |
1243 |
|
✗ |
RMAPI Matrix MatrixAdd(Matrix left, Matrix right) |
1244 |
|
|
{ |
1245 |
|
|
Matrix result = { 0 }; |
1246 |
|
|
|
1247 |
|
✗ |
result.m0 = left.m0 + right.m0; |
1248 |
|
✗ |
result.m1 = left.m1 + right.m1; |
1249 |
|
✗ |
result.m2 = left.m2 + right.m2; |
1250 |
|
✗ |
result.m3 = left.m3 + right.m3; |
1251 |
|
✗ |
result.m4 = left.m4 + right.m4; |
1252 |
|
✗ |
result.m5 = left.m5 + right.m5; |
1253 |
|
✗ |
result.m6 = left.m6 + right.m6; |
1254 |
|
✗ |
result.m7 = left.m7 + right.m7; |
1255 |
|
✗ |
result.m8 = left.m8 + right.m8; |
1256 |
|
✗ |
result.m9 = left.m9 + right.m9; |
1257 |
|
✗ |
result.m10 = left.m10 + right.m10; |
1258 |
|
✗ |
result.m11 = left.m11 + right.m11; |
1259 |
|
✗ |
result.m12 = left.m12 + right.m12; |
1260 |
|
✗ |
result.m13 = left.m13 + right.m13; |
1261 |
|
✗ |
result.m14 = left.m14 + right.m14; |
1262 |
|
✗ |
result.m15 = left.m15 + right.m15; |
1263 |
|
|
|
1264 |
|
✗ |
return result; |
1265 |
|
|
} |
1266 |
|
|
|
1267 |
|
|
// Subtract two matrices (left - right) |
1268 |
|
✗ |
RMAPI Matrix MatrixSubtract(Matrix left, Matrix right) |
1269 |
|
|
{ |
1270 |
|
|
Matrix result = { 0 }; |
1271 |
|
|
|
1272 |
|
✗ |
result.m0 = left.m0 - right.m0; |
1273 |
|
✗ |
result.m1 = left.m1 - right.m1; |
1274 |
|
✗ |
result.m2 = left.m2 - right.m2; |
1275 |
|
✗ |
result.m3 = left.m3 - right.m3; |
1276 |
|
✗ |
result.m4 = left.m4 - right.m4; |
1277 |
|
✗ |
result.m5 = left.m5 - right.m5; |
1278 |
|
✗ |
result.m6 = left.m6 - right.m6; |
1279 |
|
✗ |
result.m7 = left.m7 - right.m7; |
1280 |
|
✗ |
result.m8 = left.m8 - right.m8; |
1281 |
|
✗ |
result.m9 = left.m9 - right.m9; |
1282 |
|
✗ |
result.m10 = left.m10 - right.m10; |
1283 |
|
✗ |
result.m11 = left.m11 - right.m11; |
1284 |
|
✗ |
result.m12 = left.m12 - right.m12; |
1285 |
|
✗ |
result.m13 = left.m13 - right.m13; |
1286 |
|
✗ |
result.m14 = left.m14 - right.m14; |
1287 |
|
✗ |
result.m15 = left.m15 - right.m15; |
1288 |
|
|
|
1289 |
|
✗ |
return result; |
1290 |
|
|
} |
1291 |
|
|
|
1292 |
|
|
// Get two matrix multiplication |
1293 |
|
|
// NOTE: When multiplying matrices... the order matters! |
1294 |
|
✗ |
RMAPI Matrix MatrixMultiply(Matrix left, Matrix right) |
1295 |
|
|
{ |
1296 |
|
|
Matrix result = { 0 }; |
1297 |
|
|
|
1298 |
|
✗ |
result.m0 = left.m0*right.m0 + left.m1*right.m4 + left.m2*right.m8 + left.m3*right.m12; |
1299 |
|
✗ |
result.m1 = left.m0*right.m1 + left.m1*right.m5 + left.m2*right.m9 + left.m3*right.m13; |
1300 |
|
✗ |
result.m2 = left.m0*right.m2 + left.m1*right.m6 + left.m2*right.m10 + left.m3*right.m14; |
1301 |
|
✗ |
result.m3 = left.m0*right.m3 + left.m1*right.m7 + left.m2*right.m11 + left.m3*right.m15; |
1302 |
|
✗ |
result.m4 = left.m4*right.m0 + left.m5*right.m4 + left.m6*right.m8 + left.m7*right.m12; |
1303 |
|
✗ |
result.m5 = left.m4*right.m1 + left.m5*right.m5 + left.m6*right.m9 + left.m7*right.m13; |
1304 |
|
✗ |
result.m6 = left.m4*right.m2 + left.m5*right.m6 + left.m6*right.m10 + left.m7*right.m14; |
1305 |
|
✗ |
result.m7 = left.m4*right.m3 + left.m5*right.m7 + left.m6*right.m11 + left.m7*right.m15; |
1306 |
|
✗ |
result.m8 = left.m8*right.m0 + left.m9*right.m4 + left.m10*right.m8 + left.m11*right.m12; |
1307 |
|
✗ |
result.m9 = left.m8*right.m1 + left.m9*right.m5 + left.m10*right.m9 + left.m11*right.m13; |
1308 |
|
✗ |
result.m10 = left.m8*right.m2 + left.m9*right.m6 + left.m10*right.m10 + left.m11*right.m14; |
1309 |
|
✗ |
result.m11 = left.m8*right.m3 + left.m9*right.m7 + left.m10*right.m11 + left.m11*right.m15; |
1310 |
|
✗ |
result.m12 = left.m12*right.m0 + left.m13*right.m4 + left.m14*right.m8 + left.m15*right.m12; |
1311 |
|
✗ |
result.m13 = left.m12*right.m1 + left.m13*right.m5 + left.m14*right.m9 + left.m15*right.m13; |
1312 |
|
✗ |
result.m14 = left.m12*right.m2 + left.m13*right.m6 + left.m14*right.m10 + left.m15*right.m14; |
1313 |
|
✗ |
result.m15 = left.m12*right.m3 + left.m13*right.m7 + left.m14*right.m11 + left.m15*right.m15; |
1314 |
|
|
|
1315 |
|
✗ |
return result; |
1316 |
|
|
} |
1317 |
|
|
|
1318 |
|
|
// Get translation matrix |
1319 |
|
✗ |
RMAPI Matrix MatrixTranslate(float x, float y, float z) |
1320 |
|
|
{ |
1321 |
|
|
Matrix result = { 1.0f, 0.0f, 0.0f, x, |
1322 |
|
|
0.0f, 1.0f, 0.0f, y, |
1323 |
|
|
0.0f, 0.0f, 1.0f, z, |
1324 |
|
|
0.0f, 0.0f, 0.0f, 1.0f }; |
1325 |
|
|
|
1326 |
|
✗ |
return result; |
1327 |
|
|
} |
1328 |
|
|
|
1329 |
|
|
// Create rotation matrix from axis and angle |
1330 |
|
|
// NOTE: Angle should be provided in radians |
1331 |
|
✗ |
RMAPI Matrix MatrixRotate(Vector3 axis, float angle) |
1332 |
|
|
{ |
1333 |
|
|
Matrix result = { 0 }; |
1334 |
|
|
|
1335 |
|
✗ |
float x = axis.x, y = axis.y, z = axis.z; |
1336 |
|
|
|
1337 |
|
✗ |
float lengthSquared = x*x + y*y + z*z; |
1338 |
|
|
|
1339 |
|
✗ |
if ((lengthSquared != 1.0f) && (lengthSquared != 0.0f)) |
1340 |
|
|
{ |
1341 |
|
✗ |
float ilength = 1.0f/sqrtf(lengthSquared); |
1342 |
|
✗ |
x *= ilength; |
1343 |
|
✗ |
y *= ilength; |
1344 |
|
✗ |
z *= ilength; |
1345 |
|
|
} |
1346 |
|
|
|
1347 |
|
✗ |
float sinres = sinf(angle); |
1348 |
|
✗ |
float cosres = cosf(angle); |
1349 |
|
✗ |
float t = 1.0f - cosres; |
1350 |
|
|
|
1351 |
|
✗ |
result.m0 = x*x*t + cosres; |
1352 |
|
✗ |
result.m1 = y*x*t + z*sinres; |
1353 |
|
✗ |
result.m2 = z*x*t - y*sinres; |
1354 |
|
|
result.m3 = 0.0f; |
1355 |
|
|
|
1356 |
|
✗ |
result.m4 = x*y*t - z*sinres; |
1357 |
|
✗ |
result.m5 = y*y*t + cosres; |
1358 |
|
✗ |
result.m6 = z*y*t + x*sinres; |
1359 |
|
|
result.m7 = 0.0f; |
1360 |
|
|
|
1361 |
|
✗ |
result.m8 = x*z*t + y*sinres; |
1362 |
|
✗ |
result.m9 = y*z*t - x*sinres; |
1363 |
|
✗ |
result.m10 = z*z*t + cosres; |
1364 |
|
|
result.m11 = 0.0f; |
1365 |
|
|
|
1366 |
|
|
result.m12 = 0.0f; |
1367 |
|
|
result.m13 = 0.0f; |
1368 |
|
|
result.m14 = 0.0f; |
1369 |
|
|
result.m15 = 1.0f; |
1370 |
|
|
|
1371 |
|
✗ |
return result; |
1372 |
|
|
} |
1373 |
|
|
|
1374 |
|
|
// Get x-rotation matrix |
1375 |
|
|
// NOTE: Angle must be provided in radians |
1376 |
|
✗ |
RMAPI Matrix MatrixRotateX(float angle) |
1377 |
|
|
{ |
1378 |
|
|
Matrix result = { 1.0f, 0.0f, 0.0f, 0.0f, |
1379 |
|
|
0.0f, 1.0f, 0.0f, 0.0f, |
1380 |
|
|
0.0f, 0.0f, 1.0f, 0.0f, |
1381 |
|
|
0.0f, 0.0f, 0.0f, 1.0f }; // MatrixIdentity() |
1382 |
|
|
|
1383 |
|
✗ |
float cosres = cosf(angle); |
1384 |
|
✗ |
float sinres = sinf(angle); |
1385 |
|
|
|
1386 |
|
|
result.m5 = cosres; |
1387 |
|
|
result.m6 = sinres; |
1388 |
|
✗ |
result.m9 = -sinres; |
1389 |
|
|
result.m10 = cosres; |
1390 |
|
|
|
1391 |
|
✗ |
return result; |
1392 |
|
|
} |
1393 |
|
|
|
1394 |
|
|
// Get y-rotation matrix |
1395 |
|
|
// NOTE: Angle must be provided in radians |
1396 |
|
✗ |
RMAPI Matrix MatrixRotateY(float angle) |
1397 |
|
|
{ |
1398 |
|
|
Matrix result = { 1.0f, 0.0f, 0.0f, 0.0f, |
1399 |
|
|
0.0f, 1.0f, 0.0f, 0.0f, |
1400 |
|
|
0.0f, 0.0f, 1.0f, 0.0f, |
1401 |
|
|
0.0f, 0.0f, 0.0f, 1.0f }; // MatrixIdentity() |
1402 |
|
|
|
1403 |
|
✗ |
float cosres = cosf(angle); |
1404 |
|
✗ |
float sinres = sinf(angle); |
1405 |
|
|
|
1406 |
|
|
result.m0 = cosres; |
1407 |
|
✗ |
result.m2 = -sinres; |
1408 |
|
|
result.m8 = sinres; |
1409 |
|
|
result.m10 = cosres; |
1410 |
|
|
|
1411 |
|
✗ |
return result; |
1412 |
|
|
} |
1413 |
|
|
|
1414 |
|
|
// Get z-rotation matrix |
1415 |
|
|
// NOTE: Angle must be provided in radians |
1416 |
|
✗ |
RMAPI Matrix MatrixRotateZ(float angle) |
1417 |
|
|
{ |
1418 |
|
|
Matrix result = { 1.0f, 0.0f, 0.0f, 0.0f, |
1419 |
|
|
0.0f, 1.0f, 0.0f, 0.0f, |
1420 |
|
|
0.0f, 0.0f, 1.0f, 0.0f, |
1421 |
|
|
0.0f, 0.0f, 0.0f, 1.0f }; // MatrixIdentity() |
1422 |
|
|
|
1423 |
|
✗ |
float cosres = cosf(angle); |
1424 |
|
✗ |
float sinres = sinf(angle); |
1425 |
|
|
|
1426 |
|
|
result.m0 = cosres; |
1427 |
|
|
result.m1 = sinres; |
1428 |
|
✗ |
result.m4 = -sinres; |
1429 |
|
|
result.m5 = cosres; |
1430 |
|
|
|
1431 |
|
✗ |
return result; |
1432 |
|
|
} |
1433 |
|
|
|
1434 |
|
|
|
1435 |
|
|
// Get xyz-rotation matrix |
1436 |
|
|
// NOTE: Angle must be provided in radians |
1437 |
|
✗ |
RMAPI Matrix MatrixRotateXYZ(Vector3 angle) |
1438 |
|
|
{ |
1439 |
|
|
Matrix result = { 1.0f, 0.0f, 0.0f, 0.0f, |
1440 |
|
|
0.0f, 1.0f, 0.0f, 0.0f, |
1441 |
|
|
0.0f, 0.0f, 1.0f, 0.0f, |
1442 |
|
|
0.0f, 0.0f, 0.0f, 1.0f }; // MatrixIdentity() |
1443 |
|
|
|
1444 |
|
✗ |
float cosz = cosf(-angle.z); |
1445 |
|
✗ |
float sinz = sinf(-angle.z); |
1446 |
|
✗ |
float cosy = cosf(-angle.y); |
1447 |
|
✗ |
float siny = sinf(-angle.y); |
1448 |
|
✗ |
float cosx = cosf(-angle.x); |
1449 |
|
✗ |
float sinx = sinf(-angle.x); |
1450 |
|
|
|
1451 |
|
✗ |
result.m0 = cosz*cosy; |
1452 |
|
✗ |
result.m1 = (cosz*siny*sinx) - (sinz*cosx); |
1453 |
|
✗ |
result.m2 = (cosz*siny*cosx) + (sinz*sinx); |
1454 |
|
|
|
1455 |
|
✗ |
result.m4 = sinz*cosy; |
1456 |
|
✗ |
result.m5 = (sinz*siny*sinx) + (cosz*cosx); |
1457 |
|
✗ |
result.m6 = (sinz*siny*cosx) - (cosz*sinx); |
1458 |
|
|
|
1459 |
|
✗ |
result.m8 = -siny; |
1460 |
|
✗ |
result.m9 = cosy*sinx; |
1461 |
|
✗ |
result.m10= cosy*cosx; |
1462 |
|
|
|
1463 |
|
✗ |
return result; |
1464 |
|
|
} |
1465 |
|
|
|
1466 |
|
|
// Get zyx-rotation matrix |
1467 |
|
|
// NOTE: Angle must be provided in radians |
1468 |
|
✗ |
RMAPI Matrix MatrixRotateZYX(Vector3 angle) |
1469 |
|
|
{ |
1470 |
|
|
Matrix result = { 0 }; |
1471 |
|
|
|
1472 |
|
✗ |
float cz = cosf(angle.z); |
1473 |
|
✗ |
float sz = sinf(angle.z); |
1474 |
|
✗ |
float cy = cosf(angle.y); |
1475 |
|
✗ |
float sy = sinf(angle.y); |
1476 |
|
✗ |
float cx = cosf(angle.x); |
1477 |
|
✗ |
float sx = sinf(angle.x); |
1478 |
|
|
|
1479 |
|
✗ |
result.m0 = cz*cy; |
1480 |
|
✗ |
result.m4 = cz*sy*sx - cx*sz; |
1481 |
|
✗ |
result.m8 = sz*sx + cz*cx*sy; |
1482 |
|
|
result.m12 = 0; |
1483 |
|
|
|
1484 |
|
✗ |
result.m1 = cy*sz; |
1485 |
|
✗ |
result.m5 = cz*cx + sz*sy*sx; |
1486 |
|
✗ |
result.m9 = cx*sz*sy - cz*sx; |
1487 |
|
|
result.m13 = 0; |
1488 |
|
|
|
1489 |
|
✗ |
result.m2 = -sy; |
1490 |
|
✗ |
result.m6 = cy*sx; |
1491 |
|
✗ |
result.m10 = cy*cx; |
1492 |
|
|
result.m14 = 0; |
1493 |
|
|
|
1494 |
|
|
result.m3 = 0; |
1495 |
|
|
result.m7 = 0; |
1496 |
|
|
result.m11 = 0; |
1497 |
|
|
result.m15 = 1; |
1498 |
|
|
|
1499 |
|
✗ |
return result; |
1500 |
|
|
} |
1501 |
|
|
|
1502 |
|
|
// Get scaling matrix |
1503 |
|
✗ |
RMAPI Matrix MatrixScale(float x, float y, float z) |
1504 |
|
|
{ |
1505 |
|
|
Matrix result = { x, 0.0f, 0.0f, 0.0f, |
1506 |
|
|
0.0f, y, 0.0f, 0.0f, |
1507 |
|
|
0.0f, 0.0f, z, 0.0f, |
1508 |
|
|
0.0f, 0.0f, 0.0f, 1.0f }; |
1509 |
|
|
|
1510 |
|
✗ |
return result; |
1511 |
|
|
} |
1512 |
|
|
|
1513 |
|
|
// Get perspective projection matrix |
1514 |
|
✗ |
RMAPI Matrix MatrixFrustum(double left, double right, double bottom, double top, double near, double far) |
1515 |
|
|
{ |
1516 |
|
|
Matrix result = { 0 }; |
1517 |
|
|
|
1518 |
|
✗ |
float rl = (float)(right - left); |
1519 |
|
✗ |
float tb = (float)(top - bottom); |
1520 |
|
✗ |
float fn = (float)(far - near); |
1521 |
|
|
|
1522 |
|
✗ |
result.m0 = ((float)near*2.0f)/rl; |
1523 |
|
|
result.m1 = 0.0f; |
1524 |
|
|
result.m2 = 0.0f; |
1525 |
|
|
result.m3 = 0.0f; |
1526 |
|
|
|
1527 |
|
|
result.m4 = 0.0f; |
1528 |
|
✗ |
result.m5 = ((float)near*2.0f)/tb; |
1529 |
|
|
result.m6 = 0.0f; |
1530 |
|
|
result.m7 = 0.0f; |
1531 |
|
|
|
1532 |
|
✗ |
result.m8 = ((float)right + (float)left)/rl; |
1533 |
|
✗ |
result.m9 = ((float)top + (float)bottom)/tb; |
1534 |
|
✗ |
result.m10 = -((float)far + (float)near)/fn; |
1535 |
|
|
result.m11 = -1.0f; |
1536 |
|
|
|
1537 |
|
|
result.m12 = 0.0f; |
1538 |
|
|
result.m13 = 0.0f; |
1539 |
|
✗ |
result.m14 = -((float)far*(float)near*2.0f)/fn; |
1540 |
|
|
result.m15 = 0.0f; |
1541 |
|
|
|
1542 |
|
✗ |
return result; |
1543 |
|
|
} |
1544 |
|
|
|
1545 |
|
|
// Get perspective projection matrix |
1546 |
|
|
// NOTE: Fovy angle must be provided in radians |
1547 |
|
✗ |
RMAPI Matrix MatrixPerspective(double fovY, double aspect, double nearPlane, double farPlane) |
1548 |
|
|
{ |
1549 |
|
|
Matrix result = { 0 }; |
1550 |
|
|
|
1551 |
|
✗ |
double top = nearPlane*tan(fovY*0.5); |
1552 |
|
✗ |
double bottom = -top; |
1553 |
|
✗ |
double right = top*aspect; |
1554 |
|
✗ |
double left = -right; |
1555 |
|
|
|
1556 |
|
|
// MatrixFrustum(-right, right, -top, top, near, far); |
1557 |
|
✗ |
float rl = (float)(right - left); |
1558 |
|
✗ |
float tb = (float)(top - bottom); |
1559 |
|
✗ |
float fn = (float)(farPlane - nearPlane); |
1560 |
|
|
|
1561 |
|
✗ |
result.m0 = ((float)nearPlane*2.0f)/rl; |
1562 |
|
✗ |
result.m5 = ((float)nearPlane*2.0f)/tb; |
1563 |
|
✗ |
result.m8 = ((float)right + (float)left)/rl; |
1564 |
|
✗ |
result.m9 = ((float)top + (float)bottom)/tb; |
1565 |
|
✗ |
result.m10 = -((float)farPlane + (float)nearPlane)/fn; |
1566 |
|
|
result.m11 = -1.0f; |
1567 |
|
✗ |
result.m14 = -((float)farPlane*(float)nearPlane*2.0f)/fn; |
1568 |
|
|
|
1569 |
|
✗ |
return result; |
1570 |
|
|
} |
1571 |
|
|
|
1572 |
|
|
// Get orthographic projection matrix |
1573 |
|
✗ |
RMAPI Matrix MatrixOrtho(double left, double right, double bottom, double top, double nearPlane, double farPlane) |
1574 |
|
|
{ |
1575 |
|
|
Matrix result = { 0 }; |
1576 |
|
|
|
1577 |
|
✗ |
float rl = (float)(right - left); |
1578 |
|
✗ |
float tb = (float)(top - bottom); |
1579 |
|
✗ |
float fn = (float)(farPlane - nearPlane); |
1580 |
|
|
|
1581 |
|
✗ |
result.m0 = 2.0f/rl; |
1582 |
|
|
result.m1 = 0.0f; |
1583 |
|
|
result.m2 = 0.0f; |
1584 |
|
|
result.m3 = 0.0f; |
1585 |
|
|
result.m4 = 0.0f; |
1586 |
|
✗ |
result.m5 = 2.0f/tb; |
1587 |
|
|
result.m6 = 0.0f; |
1588 |
|
|
result.m7 = 0.0f; |
1589 |
|
|
result.m8 = 0.0f; |
1590 |
|
|
result.m9 = 0.0f; |
1591 |
|
✗ |
result.m10 = -2.0f/fn; |
1592 |
|
|
result.m11 = 0.0f; |
1593 |
|
✗ |
result.m12 = -((float)left + (float)right)/rl; |
1594 |
|
✗ |
result.m13 = -((float)top + (float)bottom)/tb; |
1595 |
|
✗ |
result.m14 = -((float)farPlane + (float)nearPlane)/fn; |
1596 |
|
|
result.m15 = 1.0f; |
1597 |
|
|
|
1598 |
|
✗ |
return result; |
1599 |
|
|
} |
1600 |
|
|
|
1601 |
|
|
// Get camera look-at matrix (view matrix) |
1602 |
|
✗ |
RMAPI Matrix MatrixLookAt(Vector3 eye, Vector3 target, Vector3 up) |
1603 |
|
|
{ |
1604 |
|
|
Matrix result = { 0 }; |
1605 |
|
|
|
1606 |
|
|
float length = 0.0f; |
1607 |
|
|
float ilength = 0.0f; |
1608 |
|
|
|
1609 |
|
|
// Vector3Subtract(eye, target) |
1610 |
|
✗ |
Vector3 vz = { eye.x - target.x, eye.y - target.y, eye.z - target.z }; |
1611 |
|
|
|
1612 |
|
|
// Vector3Normalize(vz) |
1613 |
|
|
Vector3 v = vz; |
1614 |
|
✗ |
length = sqrtf(v.x*v.x + v.y*v.y + v.z*v.z); |
1615 |
|
✗ |
if (length == 0.0f) length = 1.0f; |
1616 |
|
✗ |
ilength = 1.0f/length; |
1617 |
|
✗ |
vz.x *= ilength; |
1618 |
|
✗ |
vz.y *= ilength; |
1619 |
|
✗ |
vz.z *= ilength; |
1620 |
|
|
|
1621 |
|
|
// Vector3CrossProduct(up, vz) |
1622 |
|
✗ |
Vector3 vx = { up.y*vz.z - up.z*vz.y, up.z*vz.x - up.x*vz.z, up.x*vz.y - up.y*vz.x }; |
1623 |
|
|
|
1624 |
|
|
// Vector3Normalize(x) |
1625 |
|
|
v = vx; |
1626 |
|
✗ |
length = sqrtf(v.x*v.x + v.y*v.y + v.z*v.z); |
1627 |
|
✗ |
if (length == 0.0f) length = 1.0f; |
1628 |
|
✗ |
ilength = 1.0f/length; |
1629 |
|
✗ |
vx.x *= ilength; |
1630 |
|
✗ |
vx.y *= ilength; |
1631 |
|
✗ |
vx.z *= ilength; |
1632 |
|
|
|
1633 |
|
|
// Vector3CrossProduct(vz, vx) |
1634 |
|
✗ |
Vector3 vy = { vz.y*vx.z - vz.z*vx.y, vz.z*vx.x - vz.x*vx.z, vz.x*vx.y - vz.y*vx.x }; |
1635 |
|
|
|
1636 |
|
|
result.m0 = vx.x; |
1637 |
|
|
result.m1 = vy.x; |
1638 |
|
|
result.m2 = vz.x; |
1639 |
|
|
result.m3 = 0.0f; |
1640 |
|
|
result.m4 = vx.y; |
1641 |
|
|
result.m5 = vy.y; |
1642 |
|
|
result.m6 = vz.y; |
1643 |
|
|
result.m7 = 0.0f; |
1644 |
|
|
result.m8 = vx.z; |
1645 |
|
|
result.m9 = vy.z; |
1646 |
|
|
result.m10 = vz.z; |
1647 |
|
|
result.m11 = 0.0f; |
1648 |
|
✗ |
result.m12 = -(vx.x*eye.x + vx.y*eye.y + vx.z*eye.z); // Vector3DotProduct(vx, eye) |
1649 |
|
✗ |
result.m13 = -(vy.x*eye.x + vy.y*eye.y + vy.z*eye.z); // Vector3DotProduct(vy, eye) |
1650 |
|
✗ |
result.m14 = -(vz.x*eye.x + vz.y*eye.y + vz.z*eye.z); // Vector3DotProduct(vz, eye) |
1651 |
|
|
result.m15 = 1.0f; |
1652 |
|
|
|
1653 |
|
✗ |
return result; |
1654 |
|
|
} |
1655 |
|
|
|
1656 |
|
|
// Get float array of matrix data |
1657 |
|
✗ |
RMAPI float16 MatrixToFloatV(Matrix mat) |
1658 |
|
|
{ |
1659 |
|
|
float16 result = { 0 }; |
1660 |
|
|
|
1661 |
|
✗ |
result.v[0] = mat.m0; |
1662 |
|
✗ |
result.v[1] = mat.m1; |
1663 |
|
✗ |
result.v[2] = mat.m2; |
1664 |
|
✗ |
result.v[3] = mat.m3; |
1665 |
|
✗ |
result.v[4] = mat.m4; |
1666 |
|
✗ |
result.v[5] = mat.m5; |
1667 |
|
✗ |
result.v[6] = mat.m6; |
1668 |
|
✗ |
result.v[7] = mat.m7; |
1669 |
|
✗ |
result.v[8] = mat.m8; |
1670 |
|
✗ |
result.v[9] = mat.m9; |
1671 |
|
✗ |
result.v[10] = mat.m10; |
1672 |
|
✗ |
result.v[11] = mat.m11; |
1673 |
|
✗ |
result.v[12] = mat.m12; |
1674 |
|
✗ |
result.v[13] = mat.m13; |
1675 |
|
✗ |
result.v[14] = mat.m14; |
1676 |
|
✗ |
result.v[15] = mat.m15; |
1677 |
|
|
|
1678 |
|
✗ |
return result; |
1679 |
|
|
} |
1680 |
|
|
|
1681 |
|
|
//---------------------------------------------------------------------------------- |
1682 |
|
|
// Module Functions Definition - Quaternion math |
1683 |
|
|
//---------------------------------------------------------------------------------- |
1684 |
|
|
|
1685 |
|
|
// Add two quaternions |
1686 |
|
✗ |
RMAPI Quaternion QuaternionAdd(Quaternion q1, Quaternion q2) |
1687 |
|
|
{ |
1688 |
|
✗ |
Quaternion result = {q1.x + q2.x, q1.y + q2.y, q1.z + q2.z, q1.w + q2.w}; |
1689 |
|
|
|
1690 |
|
✗ |
return result; |
1691 |
|
|
} |
1692 |
|
|
|
1693 |
|
|
// Add quaternion and float value |
1694 |
|
✗ |
RMAPI Quaternion QuaternionAddValue(Quaternion q, float add) |
1695 |
|
|
{ |
1696 |
|
✗ |
Quaternion result = {q.x + add, q.y + add, q.z + add, q.w + add}; |
1697 |
|
|
|
1698 |
|
✗ |
return result; |
1699 |
|
|
} |
1700 |
|
|
|
1701 |
|
|
// Subtract two quaternions |
1702 |
|
✗ |
RMAPI Quaternion QuaternionSubtract(Quaternion q1, Quaternion q2) |
1703 |
|
|
{ |
1704 |
|
✗ |
Quaternion result = {q1.x - q2.x, q1.y - q2.y, q1.z - q2.z, q1.w - q2.w}; |
1705 |
|
|
|
1706 |
|
✗ |
return result; |
1707 |
|
|
} |
1708 |
|
|
|
1709 |
|
|
// Subtract quaternion and float value |
1710 |
|
✗ |
RMAPI Quaternion QuaternionSubtractValue(Quaternion q, float sub) |
1711 |
|
|
{ |
1712 |
|
✗ |
Quaternion result = {q.x - sub, q.y - sub, q.z - sub, q.w - sub}; |
1713 |
|
|
|
1714 |
|
✗ |
return result; |
1715 |
|
|
} |
1716 |
|
|
|
1717 |
|
|
// Get identity quaternion |
1718 |
|
✗ |
RMAPI Quaternion QuaternionIdentity(void) |
1719 |
|
|
{ |
1720 |
|
|
Quaternion result = { 0.0f, 0.0f, 0.0f, 1.0f }; |
1721 |
|
|
|
1722 |
|
✗ |
return result; |
1723 |
|
|
} |
1724 |
|
|
|
1725 |
|
|
// Computes the length of a quaternion |
1726 |
|
✗ |
RMAPI float QuaternionLength(Quaternion q) |
1727 |
|
|
{ |
1728 |
|
✗ |
float result = sqrtf(q.x*q.x + q.y*q.y + q.z*q.z + q.w*q.w); |
1729 |
|
|
|
1730 |
|
✗ |
return result; |
1731 |
|
|
} |
1732 |
|
|
|
1733 |
|
|
// Normalize provided quaternion |
1734 |
|
✗ |
RMAPI Quaternion QuaternionNormalize(Quaternion q) |
1735 |
|
|
{ |
1736 |
|
|
Quaternion result = { 0 }; |
1737 |
|
|
|
1738 |
|
✗ |
float length = sqrtf(q.x*q.x + q.y*q.y + q.z*q.z + q.w*q.w); |
1739 |
|
✗ |
if (length == 0.0f) length = 1.0f; |
1740 |
|
✗ |
float ilength = 1.0f/length; |
1741 |
|
|
|
1742 |
|
✗ |
result.x = q.x*ilength; |
1743 |
|
✗ |
result.y = q.y*ilength; |
1744 |
|
✗ |
result.z = q.z*ilength; |
1745 |
|
✗ |
result.w = q.w*ilength; |
1746 |
|
|
|
1747 |
|
✗ |
return result; |
1748 |
|
|
} |
1749 |
|
|
|
1750 |
|
|
// Invert provided quaternion |
1751 |
|
✗ |
RMAPI Quaternion QuaternionInvert(Quaternion q) |
1752 |
|
|
{ |
1753 |
|
|
Quaternion result = q; |
1754 |
|
|
|
1755 |
|
✗ |
float lengthSq = q.x*q.x + q.y*q.y + q.z*q.z + q.w*q.w; |
1756 |
|
|
|
1757 |
|
✗ |
if (lengthSq != 0.0f) |
1758 |
|
|
{ |
1759 |
|
✗ |
float invLength = 1.0f/lengthSq; |
1760 |
|
|
|
1761 |
|
✗ |
result.x *= -invLength; |
1762 |
|
✗ |
result.y *= -invLength; |
1763 |
|
✗ |
result.z *= -invLength; |
1764 |
|
✗ |
result.w *= invLength; |
1765 |
|
|
} |
1766 |
|
|
|
1767 |
|
✗ |
return result; |
1768 |
|
|
} |
1769 |
|
|
|
1770 |
|
|
// Calculate two quaternion multiplication |
1771 |
|
✗ |
RMAPI Quaternion QuaternionMultiply(Quaternion q1, Quaternion q2) |
1772 |
|
|
{ |
1773 |
|
|
Quaternion result = { 0 }; |
1774 |
|
|
|
1775 |
|
✗ |
float qax = q1.x, qay = q1.y, qaz = q1.z, qaw = q1.w; |
1776 |
|
✗ |
float qbx = q2.x, qby = q2.y, qbz = q2.z, qbw = q2.w; |
1777 |
|
|
|
1778 |
|
✗ |
result.x = qax*qbw + qaw*qbx + qay*qbz - qaz*qby; |
1779 |
|
✗ |
result.y = qay*qbw + qaw*qby + qaz*qbx - qax*qbz; |
1780 |
|
✗ |
result.z = qaz*qbw + qaw*qbz + qax*qby - qay*qbx; |
1781 |
|
✗ |
result.w = qaw*qbw - qax*qbx - qay*qby - qaz*qbz; |
1782 |
|
|
|
1783 |
|
✗ |
return result; |
1784 |
|
|
} |
1785 |
|
|
|
1786 |
|
|
// Scale quaternion by float value |
1787 |
|
✗ |
RMAPI Quaternion QuaternionScale(Quaternion q, float mul) |
1788 |
|
|
{ |
1789 |
|
|
Quaternion result = { 0 }; |
1790 |
|
|
|
1791 |
|
✗ |
result.x = q.x*mul; |
1792 |
|
✗ |
result.y = q.y*mul; |
1793 |
|
✗ |
result.z = q.z*mul; |
1794 |
|
✗ |
result.w = q.w*mul; |
1795 |
|
|
|
1796 |
|
✗ |
return result; |
1797 |
|
|
} |
1798 |
|
|
|
1799 |
|
|
// Divide two quaternions |
1800 |
|
✗ |
RMAPI Quaternion QuaternionDivide(Quaternion q1, Quaternion q2) |
1801 |
|
|
{ |
1802 |
|
✗ |
Quaternion result = { q1.x/q2.x, q1.y/q2.y, q1.z/q2.z, q1.w/q2.w }; |
1803 |
|
|
|
1804 |
|
✗ |
return result; |
1805 |
|
|
} |
1806 |
|
|
|
1807 |
|
|
// Calculate linear interpolation between two quaternions |
1808 |
|
✗ |
RMAPI Quaternion QuaternionLerp(Quaternion q1, Quaternion q2, float amount) |
1809 |
|
|
{ |
1810 |
|
|
Quaternion result = { 0 }; |
1811 |
|
|
|
1812 |
|
✗ |
result.x = q1.x + amount*(q2.x - q1.x); |
1813 |
|
✗ |
result.y = q1.y + amount*(q2.y - q1.y); |
1814 |
|
✗ |
result.z = q1.z + amount*(q2.z - q1.z); |
1815 |
|
✗ |
result.w = q1.w + amount*(q2.w - q1.w); |
1816 |
|
|
|
1817 |
|
✗ |
return result; |
1818 |
|
|
} |
1819 |
|
|
|
1820 |
|
|
// Calculate slerp-optimized interpolation between two quaternions |
1821 |
|
✗ |
RMAPI Quaternion QuaternionNlerp(Quaternion q1, Quaternion q2, float amount) |
1822 |
|
|
{ |
1823 |
|
|
Quaternion result = { 0 }; |
1824 |
|
|
|
1825 |
|
|
// QuaternionLerp(q1, q2, amount) |
1826 |
|
✗ |
result.x = q1.x + amount*(q2.x - q1.x); |
1827 |
|
✗ |
result.y = q1.y + amount*(q2.y - q1.y); |
1828 |
|
✗ |
result.z = q1.z + amount*(q2.z - q1.z); |
1829 |
|
✗ |
result.w = q1.w + amount*(q2.w - q1.w); |
1830 |
|
|
|
1831 |
|
|
// QuaternionNormalize(q); |
1832 |
|
|
Quaternion q = result; |
1833 |
|
✗ |
float length = sqrtf(q.x*q.x + q.y*q.y + q.z*q.z + q.w*q.w); |
1834 |
|
✗ |
if (length == 0.0f) length = 1.0f; |
1835 |
|
✗ |
float ilength = 1.0f/length; |
1836 |
|
|
|
1837 |
|
✗ |
result.x = q.x*ilength; |
1838 |
|
✗ |
result.y = q.y*ilength; |
1839 |
|
✗ |
result.z = q.z*ilength; |
1840 |
|
✗ |
result.w = q.w*ilength; |
1841 |
|
|
|
1842 |
|
✗ |
return result; |
1843 |
|
|
} |
1844 |
|
|
|
1845 |
|
|
// Calculates spherical linear interpolation between two quaternions |
1846 |
|
✗ |
RMAPI Quaternion QuaternionSlerp(Quaternion q1, Quaternion q2, float amount) |
1847 |
|
|
{ |
1848 |
|
|
Quaternion result = { 0 }; |
1849 |
|
|
|
1850 |
|
✗ |
float cosHalfTheta = q1.x*q2.x + q1.y*q2.y + q1.z*q2.z + q1.w*q2.w; |
1851 |
|
|
|
1852 |
|
✗ |
if (cosHalfTheta < 0) |
1853 |
|
|
{ |
1854 |
|
✗ |
q2.x = -q2.x; q2.y = -q2.y; q2.z = -q2.z; q2.w = -q2.w; |
1855 |
|
✗ |
cosHalfTheta = -cosHalfTheta; |
1856 |
|
|
} |
1857 |
|
|
|
1858 |
|
✗ |
if (fabsf(cosHalfTheta) >= 1.0f) result = q1; |
1859 |
|
✗ |
else if (cosHalfTheta > 0.95f) result = QuaternionNlerp(q1, q2, amount); |
1860 |
|
|
else |
1861 |
|
|
{ |
1862 |
|
✗ |
float halfTheta = acosf(cosHalfTheta); |
1863 |
|
✗ |
float sinHalfTheta = sqrtf(1.0f - cosHalfTheta*cosHalfTheta); |
1864 |
|
|
|
1865 |
|
✗ |
if (fabsf(sinHalfTheta) < 0.001f) |
1866 |
|
|
{ |
1867 |
|
✗ |
result.x = (q1.x*0.5f + q2.x*0.5f); |
1868 |
|
✗ |
result.y = (q1.y*0.5f + q2.y*0.5f); |
1869 |
|
✗ |
result.z = (q1.z*0.5f + q2.z*0.5f); |
1870 |
|
✗ |
result.w = (q1.w*0.5f + q2.w*0.5f); |
1871 |
|
|
} |
1872 |
|
|
else |
1873 |
|
|
{ |
1874 |
|
✗ |
float ratioA = sinf((1 - amount)*halfTheta)/sinHalfTheta; |
1875 |
|
✗ |
float ratioB = sinf(amount*halfTheta)/sinHalfTheta; |
1876 |
|
|
|
1877 |
|
✗ |
result.x = (q1.x*ratioA + q2.x*ratioB); |
1878 |
|
✗ |
result.y = (q1.y*ratioA + q2.y*ratioB); |
1879 |
|
✗ |
result.z = (q1.z*ratioA + q2.z*ratioB); |
1880 |
|
✗ |
result.w = (q1.w*ratioA + q2.w*ratioB); |
1881 |
|
|
} |
1882 |
|
|
} |
1883 |
|
|
|
1884 |
|
✗ |
return result; |
1885 |
|
|
} |
1886 |
|
|
|
1887 |
|
|
// Calculate quaternion based on the rotation from one vector to another |
1888 |
|
✗ |
RMAPI Quaternion QuaternionFromVector3ToVector3(Vector3 from, Vector3 to) |
1889 |
|
|
{ |
1890 |
|
|
Quaternion result = { 0 }; |
1891 |
|
|
|
1892 |
|
✗ |
float cos2Theta = (from.x*to.x + from.y*to.y + from.z*to.z); // Vector3DotProduct(from, to) |
1893 |
|
✗ |
Vector3 cross = { from.y*to.z - from.z*to.y, from.z*to.x - from.x*to.z, from.x*to.y - from.y*to.x }; // Vector3CrossProduct(from, to) |
1894 |
|
|
|
1895 |
|
|
result.x = cross.x; |
1896 |
|
|
result.y = cross.y; |
1897 |
|
|
result.z = cross.z; |
1898 |
|
✗ |
result.w = 1.0f + cos2Theta; |
1899 |
|
|
|
1900 |
|
|
// QuaternionNormalize(q); |
1901 |
|
|
// NOTE: Normalize to essentially nlerp the original and identity to 0.5 |
1902 |
|
|
Quaternion q = result; |
1903 |
|
✗ |
float length = sqrtf(q.x*q.x + q.y*q.y + q.z*q.z + q.w*q.w); |
1904 |
|
✗ |
if (length == 0.0f) length = 1.0f; |
1905 |
|
✗ |
float ilength = 1.0f/length; |
1906 |
|
|
|
1907 |
|
✗ |
result.x = q.x*ilength; |
1908 |
|
✗ |
result.y = q.y*ilength; |
1909 |
|
✗ |
result.z = q.z*ilength; |
1910 |
|
✗ |
result.w = q.w*ilength; |
1911 |
|
|
|
1912 |
|
✗ |
return result; |
1913 |
|
|
} |
1914 |
|
|
|
1915 |
|
|
// Get a quaternion for a given rotation matrix |
1916 |
|
✗ |
RMAPI Quaternion QuaternionFromMatrix(Matrix mat) |
1917 |
|
|
{ |
1918 |
|
|
Quaternion result = { 0 }; |
1919 |
|
|
|
1920 |
|
✗ |
float fourWSquaredMinus1 = mat.m0 + mat.m5 + mat.m10; |
1921 |
|
✗ |
float fourXSquaredMinus1 = mat.m0 - mat.m5 - mat.m10; |
1922 |
|
✗ |
float fourYSquaredMinus1 = mat.m5 - mat.m0 - mat.m10; |
1923 |
|
✗ |
float fourZSquaredMinus1 = mat.m10 - mat.m0 - mat.m5; |
1924 |
|
|
|
1925 |
|
|
int biggestIndex = 0; |
1926 |
|
|
float fourBiggestSquaredMinus1 = fourWSquaredMinus1; |
1927 |
|
✗ |
if (fourXSquaredMinus1 > fourBiggestSquaredMinus1) |
1928 |
|
|
{ |
1929 |
|
|
fourBiggestSquaredMinus1 = fourXSquaredMinus1; |
1930 |
|
|
biggestIndex = 1; |
1931 |
|
|
} |
1932 |
|
|
|
1933 |
|
✗ |
if (fourYSquaredMinus1 > fourBiggestSquaredMinus1) |
1934 |
|
|
{ |
1935 |
|
|
fourBiggestSquaredMinus1 = fourYSquaredMinus1; |
1936 |
|
|
biggestIndex = 2; |
1937 |
|
|
} |
1938 |
|
|
|
1939 |
|
✗ |
if (fourZSquaredMinus1 > fourBiggestSquaredMinus1) |
1940 |
|
|
{ |
1941 |
|
|
fourBiggestSquaredMinus1 = fourZSquaredMinus1; |
1942 |
|
|
biggestIndex = 3; |
1943 |
|
|
} |
1944 |
|
|
|
1945 |
|
✗ |
float biggestVal = sqrtf(fourBiggestSquaredMinus1 + 1.0f) * 0.5f; |
1946 |
|
✗ |
float mult = 0.25f / biggestVal; |
1947 |
|
|
|
1948 |
|
✗ |
switch (biggestIndex) |
1949 |
|
|
{ |
1950 |
|
✗ |
case 0: |
1951 |
|
|
result.w = biggestVal; |
1952 |
|
✗ |
result.x = (mat.m6 - mat.m9) * mult; |
1953 |
|
✗ |
result.y = (mat.m8 - mat.m2) * mult; |
1954 |
|
✗ |
result.z = (mat.m1 - mat.m4) * mult; |
1955 |
|
✗ |
break; |
1956 |
|
✗ |
case 1: |
1957 |
|
|
result.x = biggestVal; |
1958 |
|
✗ |
result.w = (mat.m6 - mat.m9) * mult; |
1959 |
|
✗ |
result.y = (mat.m1 + mat.m4) * mult; |
1960 |
|
✗ |
result.z = (mat.m8 + mat.m2) * mult; |
1961 |
|
✗ |
break; |
1962 |
|
✗ |
case 2: |
1963 |
|
|
result.y = biggestVal; |
1964 |
|
✗ |
result.w = (mat.m8 - mat.m2) * mult; |
1965 |
|
✗ |
result.x = (mat.m1 + mat.m4) * mult; |
1966 |
|
✗ |
result.z = (mat.m6 + mat.m9) * mult; |
1967 |
|
✗ |
break; |
1968 |
|
✗ |
case 3: |
1969 |
|
|
result.z = biggestVal; |
1970 |
|
✗ |
result.w = (mat.m1 - mat.m4) * mult; |
1971 |
|
✗ |
result.x = (mat.m8 + mat.m2) * mult; |
1972 |
|
✗ |
result.y = (mat.m6 + mat.m9) * mult; |
1973 |
|
✗ |
break; |
1974 |
|
|
} |
1975 |
|
|
|
1976 |
|
✗ |
return result; |
1977 |
|
|
} |
1978 |
|
|
|
1979 |
|
|
// Get a matrix for a given quaternion |
1980 |
|
✗ |
RMAPI Matrix QuaternionToMatrix(Quaternion q) |
1981 |
|
|
{ |
1982 |
|
|
Matrix result = { 1.0f, 0.0f, 0.0f, 0.0f, |
1983 |
|
|
0.0f, 1.0f, 0.0f, 0.0f, |
1984 |
|
|
0.0f, 0.0f, 1.0f, 0.0f, |
1985 |
|
|
0.0f, 0.0f, 0.0f, 1.0f }; // MatrixIdentity() |
1986 |
|
|
|
1987 |
|
✗ |
float a2 = q.x*q.x; |
1988 |
|
✗ |
float b2 = q.y*q.y; |
1989 |
|
✗ |
float c2 = q.z*q.z; |
1990 |
|
✗ |
float ac = q.x*q.z; |
1991 |
|
✗ |
float ab = q.x*q.y; |
1992 |
|
✗ |
float bc = q.y*q.z; |
1993 |
|
✗ |
float ad = q.w*q.x; |
1994 |
|
✗ |
float bd = q.w*q.y; |
1995 |
|
✗ |
float cd = q.w*q.z; |
1996 |
|
|
|
1997 |
|
✗ |
result.m0 = 1 - 2*(b2 + c2); |
1998 |
|
✗ |
result.m1 = 2*(ab + cd); |
1999 |
|
✗ |
result.m2 = 2*(ac - bd); |
2000 |
|
|
|
2001 |
|
✗ |
result.m4 = 2*(ab - cd); |
2002 |
|
✗ |
result.m5 = 1 - 2*(a2 + c2); |
2003 |
|
✗ |
result.m6 = 2*(bc + ad); |
2004 |
|
|
|
2005 |
|
✗ |
result.m8 = 2*(ac + bd); |
2006 |
|
✗ |
result.m9 = 2*(bc - ad); |
2007 |
|
✗ |
result.m10 = 1 - 2*(a2 + b2); |
2008 |
|
|
|
2009 |
|
✗ |
return result; |
2010 |
|
|
} |
2011 |
|
|
|
2012 |
|
|
// Get rotation quaternion for an angle and axis |
2013 |
|
|
// NOTE: Angle must be provided in radians |
2014 |
|
✗ |
RMAPI Quaternion QuaternionFromAxisAngle(Vector3 axis, float angle) |
2015 |
|
|
{ |
2016 |
|
|
Quaternion result = { 0.0f, 0.0f, 0.0f, 1.0f }; |
2017 |
|
|
|
2018 |
|
✗ |
float axisLength = sqrtf(axis.x*axis.x + axis.y*axis.y + axis.z*axis.z); |
2019 |
|
|
|
2020 |
|
✗ |
if (axisLength != 0.0f) |
2021 |
|
|
{ |
2022 |
|
✗ |
angle *= 0.5f; |
2023 |
|
|
|
2024 |
|
|
float length = 0.0f; |
2025 |
|
|
float ilength = 0.0f; |
2026 |
|
|
|
2027 |
|
|
// Vector3Normalize(axis) |
2028 |
|
|
Vector3 v = axis; |
2029 |
|
✗ |
length = sqrtf(v.x*v.x + v.y*v.y + v.z*v.z); |
2030 |
|
✗ |
if (length == 0.0f) length = 1.0f; |
2031 |
|
✗ |
ilength = 1.0f/length; |
2032 |
|
✗ |
axis.x *= ilength; |
2033 |
|
✗ |
axis.y *= ilength; |
2034 |
|
✗ |
axis.z *= ilength; |
2035 |
|
|
|
2036 |
|
✗ |
float sinres = sinf(angle); |
2037 |
|
✗ |
float cosres = cosf(angle); |
2038 |
|
|
|
2039 |
|
✗ |
result.x = axis.x*sinres; |
2040 |
|
✗ |
result.y = axis.y*sinres; |
2041 |
|
✗ |
result.z = axis.z*sinres; |
2042 |
|
|
result.w = cosres; |
2043 |
|
|
|
2044 |
|
|
// QuaternionNormalize(q); |
2045 |
|
|
Quaternion q = result; |
2046 |
|
✗ |
length = sqrtf(q.x*q.x + q.y*q.y + q.z*q.z + q.w*q.w); |
2047 |
|
✗ |
if (length == 0.0f) length = 1.0f; |
2048 |
|
✗ |
ilength = 1.0f/length; |
2049 |
|
✗ |
result.x = q.x*ilength; |
2050 |
|
✗ |
result.y = q.y*ilength; |
2051 |
|
✗ |
result.z = q.z*ilength; |
2052 |
|
✗ |
result.w = q.w*ilength; |
2053 |
|
|
} |
2054 |
|
|
|
2055 |
|
✗ |
return result; |
2056 |
|
|
} |
2057 |
|
|
|
2058 |
|
|
// Get the rotation angle and axis for a given quaternion |
2059 |
|
✗ |
RMAPI void QuaternionToAxisAngle(Quaternion q, Vector3 *outAxis, float *outAngle) |
2060 |
|
|
{ |
2061 |
|
✗ |
if (fabsf(q.w) > 1.0f) |
2062 |
|
|
{ |
2063 |
|
|
// QuaternionNormalize(q); |
2064 |
|
✗ |
float length = sqrtf(q.x*q.x + q.y*q.y + q.z*q.z + q.w*q.w); |
2065 |
|
✗ |
if (length == 0.0f) length = 1.0f; |
2066 |
|
✗ |
float ilength = 1.0f/length; |
2067 |
|
|
|
2068 |
|
✗ |
q.x = q.x*ilength; |
2069 |
|
✗ |
q.y = q.y*ilength; |
2070 |
|
✗ |
q.z = q.z*ilength; |
2071 |
|
✗ |
q.w = q.w*ilength; |
2072 |
|
|
} |
2073 |
|
|
|
2074 |
|
|
Vector3 resAxis = { 0.0f, 0.0f, 0.0f }; |
2075 |
|
✗ |
float resAngle = 2.0f*acosf(q.w); |
2076 |
|
✗ |
float den = sqrtf(1.0f - q.w*q.w); |
2077 |
|
|
|
2078 |
|
✗ |
if (den > 0.0001f) |
2079 |
|
|
{ |
2080 |
|
✗ |
resAxis.x = q.x/den; |
2081 |
|
✗ |
resAxis.y = q.y/den; |
2082 |
|
✗ |
resAxis.z = q.z/den; |
2083 |
|
|
} |
2084 |
|
|
else |
2085 |
|
|
{ |
2086 |
|
|
// This occurs when the angle is zero. |
2087 |
|
|
// Not a problem: just set an arbitrary normalized axis. |
2088 |
|
|
resAxis.x = 1.0f; |
2089 |
|
|
} |
2090 |
|
|
|
2091 |
|
✗ |
*outAxis = resAxis; |
2092 |
|
✗ |
*outAngle = resAngle; |
2093 |
|
|
} |
2094 |
|
|
|
2095 |
|
|
// Get the quaternion equivalent to Euler angles |
2096 |
|
|
// NOTE: Rotation order is ZYX |
2097 |
|
✗ |
RMAPI Quaternion QuaternionFromEuler(float pitch, float yaw, float roll) |
2098 |
|
|
{ |
2099 |
|
|
Quaternion result = { 0 }; |
2100 |
|
|
|
2101 |
|
✗ |
float x0 = cosf(pitch*0.5f); |
2102 |
|
✗ |
float x1 = sinf(pitch*0.5f); |
2103 |
|
✗ |
float y0 = cosf(yaw*0.5f); |
2104 |
|
✗ |
float y1 = sinf(yaw*0.5f); |
2105 |
|
✗ |
float z0 = cosf(roll*0.5f); |
2106 |
|
✗ |
float z1 = sinf(roll*0.5f); |
2107 |
|
|
|
2108 |
|
✗ |
result.x = x1*y0*z0 - x0*y1*z1; |
2109 |
|
✗ |
result.y = x0*y1*z0 + x1*y0*z1; |
2110 |
|
✗ |
result.z = x0*y0*z1 - x1*y1*z0; |
2111 |
|
✗ |
result.w = x0*y0*z0 + x1*y1*z1; |
2112 |
|
|
|
2113 |
|
✗ |
return result; |
2114 |
|
|
} |
2115 |
|
|
|
2116 |
|
|
// Get the Euler angles equivalent to quaternion (roll, pitch, yaw) |
2117 |
|
|
// NOTE: Angles are returned in a Vector3 struct in radians |
2118 |
|
✗ |
RMAPI Vector3 QuaternionToEuler(Quaternion q) |
2119 |
|
|
{ |
2120 |
|
|
Vector3 result = { 0 }; |
2121 |
|
|
|
2122 |
|
|
// Roll (x-axis rotation) |
2123 |
|
✗ |
float x0 = 2.0f*(q.w*q.x + q.y*q.z); |
2124 |
|
✗ |
float x1 = 1.0f - 2.0f*(q.x*q.x + q.y*q.y); |
2125 |
|
✗ |
result.x = atan2f(x0, x1); |
2126 |
|
|
|
2127 |
|
|
// Pitch (y-axis rotation) |
2128 |
|
✗ |
float y0 = 2.0f*(q.w*q.y - q.z*q.x); |
2129 |
|
✗ |
y0 = y0 > 1.0f ? 1.0f : y0; |
2130 |
|
✗ |
y0 = y0 < -1.0f ? -1.0f : y0; |
2131 |
|
✗ |
result.y = asinf(y0); |
2132 |
|
|
|
2133 |
|
|
// Yaw (z-axis rotation) |
2134 |
|
✗ |
float z0 = 2.0f*(q.w*q.z + q.x*q.y); |
2135 |
|
✗ |
float z1 = 1.0f - 2.0f*(q.y*q.y + q.z*q.z); |
2136 |
|
✗ |
result.z = atan2f(z0, z1); |
2137 |
|
|
|
2138 |
|
✗ |
return result; |
2139 |
|
|
} |
2140 |
|
|
|
2141 |
|
|
// Transform a quaternion given a transformation matrix |
2142 |
|
✗ |
RMAPI Quaternion QuaternionTransform(Quaternion q, Matrix mat) |
2143 |
|
|
{ |
2144 |
|
|
Quaternion result = { 0 }; |
2145 |
|
|
|
2146 |
|
✗ |
result.x = mat.m0*q.x + mat.m4*q.y + mat.m8*q.z + mat.m12*q.w; |
2147 |
|
✗ |
result.y = mat.m1*q.x + mat.m5*q.y + mat.m9*q.z + mat.m13*q.w; |
2148 |
|
✗ |
result.z = mat.m2*q.x + mat.m6*q.y + mat.m10*q.z + mat.m14*q.w; |
2149 |
|
✗ |
result.w = mat.m3*q.x + mat.m7*q.y + mat.m11*q.z + mat.m15*q.w; |
2150 |
|
|
|
2151 |
|
✗ |
return result; |
2152 |
|
|
} |
2153 |
|
|
|
2154 |
|
|
// Check whether two given quaternions are almost equal |
2155 |
|
✗ |
RMAPI int QuaternionEquals(Quaternion p, Quaternion q) |
2156 |
|
|
{ |
2157 |
|
✗ |
int result = (((fabsf(p.x - q.x)) <= (EPSILON*fmaxf(1.0f, fmaxf(fabsf(p.x), fabsf(q.x))))) && |
2158 |
|
✗ |
((fabsf(p.y - q.y)) <= (EPSILON*fmaxf(1.0f, fmaxf(fabsf(p.y), fabsf(q.y))))) && |
2159 |
|
✗ |
((fabsf(p.z - q.z)) <= (EPSILON*fmaxf(1.0f, fmaxf(fabsf(p.z), fabsf(q.z))))) && |
2160 |
|
✗ |
((fabsf(p.w - q.w)) <= (EPSILON*fmaxf(1.0f, fmaxf(fabsf(p.w), fabsf(q.w)))))) || |
2161 |
|
✗ |
(((fabsf(p.x + q.x)) <= (EPSILON*fmaxf(1.0f, fmaxf(fabsf(p.x), fabsf(q.x))))) && |
2162 |
|
✗ |
((fabsf(p.y + q.y)) <= (EPSILON*fmaxf(1.0f, fmaxf(fabsf(p.y), fabsf(q.y))))) && |
2163 |
|
✗ |
((fabsf(p.z + q.z)) <= (EPSILON*fmaxf(1.0f, fmaxf(fabsf(p.z), fabsf(q.z))))) && |
2164 |
|
✗ |
((fabsf(p.w + q.w)) <= (EPSILON*fmaxf(1.0f, fmaxf(fabsf(p.w), fabsf(q.w)))))); |
2165 |
|
|
|
2166 |
|
✗ |
return result; |
2167 |
|
|
} |
2168 |
|
|
|
2169 |
|
|
#endif // RAYMATH_H |
2170 |
|
|
|